The tethered peptide activation mechanism of adhesion GPCRs

被引:58
|
作者
Barros-Alvarez, Ximena [1 ]
Nwokonko, Robert M. [1 ]
Vizurraga, Alexander [2 ]
Matzov, Donna [3 ]
He, Feng [1 ]
Papasergi-Scott, Makaia M. [1 ]
Robertson, Michael J. [1 ]
Panova, Ouliana [1 ]
Yardeni, Eliane Hadas [3 ]
Seven, Alpay B. [1 ]
Kwarcinski, Frank E. [2 ]
Su, Hongyu [2 ]
Peroto, Maria Claudia [1 ]
Meyerowitz, Justin G. [1 ]
Shalev-Benami, Moran [3 ]
Tall, Gregory G. [2 ]
Skiniotis, Georgios [1 ,4 ]
机构
[1] Stanford Univ, Sch Med, Dept Mol & Cellular Physiol, Stanford, CA 94305 USA
[2] Univ Michigan, Sch Med, Dept Pharmacol, Ann Arbor, MI 48109 USA
[3] Weizmann Inst Sci, Dept Chem & Struct Biol, Rehovot, Israel
[4] Stanford Univ, Sch Med, Dept Struct Biol, Stanford, CA 94305 USA
基金
欧洲研究理事会;
关键词
PROTEIN-COUPLED RECEPTORS; CRYO-EM STRUCTURE; STRUCTURAL BASIS; MOLECULAR-DYNAMICS; SYSTEM; G-ALPHA(12/13); GPR56/ADGRG1; PREDICTION;
D O I
10.1038/s41586-022-04575-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Adhesion G-protein-coupled receptors (aGPCRs) are characterized by the presence of auto-proteolysing extracellular regions that are involved in cell-cell and cell-extracellular matrix interactions(1). Self cleavage within the aGPCR auto-proteolysis-inducing (GAIN) domain produces two protomers-N-terminal and C-terminal fragments-that remain non-covalently attached after receptors reach the cell surface(1). Upon dissociation of the N-terminal fragment, the C-terminus of the GAIN domain acts as a tethered agonist (TA) peptide to activate the seven-transmembrane domain with a mechanism that has been poorly understood(2-5). Here we provide cryo-electron microscopy snapshots of two distinct members of the aGPCR family, GPR56 (also known as ADGRG1) and latrophilin 3 (LPHN3 (also known as ADGRL3)). Low-resolution maps of the receptors in their N-terminal fragment-bound state indicate that the GAIN domain projects flexibly towards the extracellular space, keeping the encrypted TA peptide away from the seven-transmembrane domain. High-resolution structures of GPR56 and LPHN3 in their active, G-protein-coupled states, reveal that after dissociation of the extracellular region, the decrypted TA peptides engage the seven-transmembrane domain core with a notable conservation of interactions that also involve extracellular loop 2. TA binding stabilizes breaks in the middle of transmembrane helices 6 and 7 that facilitate aGPCR coupling and activation of heterotrimeric G proteins. Collectively, these results enable us to propose a general model for aGPCR activation.
引用
收藏
页码:757 / +
页数:27
相关论文
共 50 条
  • [41] Regulating protein and peptide activated GPCRs
    Fairlie, David P.
    Madala, Praveen K.
    Stoermer, Martin J.
    Suen, Jacky
    Barry, Grant
    Lohman, Rink-Jan
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 238
  • [42] Adhesion GPCRs in Regulating Immune Responses and Inflammation
    Lin, Hsi-Hsien
    Hsiao, Cheng-Chih
    Pabst, Caroline
    Hebert, Josee
    Schoneberg, Torsten
    Hamann, Jorg
    [J]. G PROTEIN-COUPLED RECEPTORS IN IMMUNE RESPONSE AND REGULATION, 2017, 136 : 163 - 201
  • [43] GPS PROTEOLYTIC CLEAVAGE OF ADHESION-GPCRs
    Lin, Hsi-Hsien
    Stacey, Martin
    Yona, Simon
    Chang, Gin-Wen
    [J]. ADHESION-GPCRS: STRUCTURE TO FUNCTION, 2010, 706 : 49 - 58
  • [44] The Origin of GPCRs: Identification of Mammalian like Rhodopsin, Adhesion, Glutamate and Frizzled GPCRs in Fungi
    Krishnan, Arunkumar
    Almen, Markus Sallman
    Fredriksson, Robert
    Schioth, Helgi B.
    [J]. PLOS ONE, 2012, 7 (01):
  • [45] Microscopic Mechanism of Specific Peptide Adhesion to Semiconductor Substrates
    Bachmann, Michael
    Goede, Karsten
    Beck-Sickinger, Annette G.
    Grundmann, Marius
    Irback, Anders
    Janke, Wolfhard
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (49) : 9530 - 9533
  • [46] Understanding the Adhesion Mechanism of Hydroxyapatite-Binding Peptide
    Duanis-Assaf, Tal
    Hu, Tan
    Lavie, Maayan
    Zhang, Zhuo
    Reches, Meital
    [J]. LANGMUIR, 2022, 38 (03) : 968 - 978
  • [47] THE ADHESION GPCRs; GENE REPERTOIRE, PHYLOGENY AND EVOLUTION
    Schioth, Helgi B.
    Nordstrom, Karl J. V.
    Fredriksson, Robert
    [J]. ADHESION-GPCRS: STRUCTURE TO FUNCTION, 2010, 706 : 1 - 13
  • [48] ADHESION-GPCRs IN THE MALE REPRODUCTIVE TRACT
    Davies, Ben
    Kirchhoff, Christiane
    [J]. ADHESION-GPCRS: STRUCTURE TO FUNCTION, 2010, 706 : 179 - 188
  • [49] The activation mechanism of family 3 GPCRs:: Insights from site directed mutagenesis studies
    Pin, JP
    Galvez, T
    Duthey, B
    Bessis, AS
    Kniazeff, J
    Acher, F
    Prézeau, L
    [J]. NEUROPHARMACOLOGY, 2002, 43 (02) : 304 - 304
  • [50] Regulation of pulmonary surfactant by the adhesion GPCR GPR116/ADGRF5 requires a tethered agonist-mediated activation mechanism
    Bridges, James P.
    Safina, Caterina
    Pirard, Bernard
    Brown, Kari
    Filuta, Alyssa
    Panchanatha, Ravichandran
    Bouhelal, Rochdi
    Reymann, Nicole
    Patel, Sejal
    Seuwen, Klaus
    Miller, William E.
    Ludwig, Marie- Gabrielle
    Arac, Demet
    [J]. ELIFE, 2022, 11