Development of a 3D Tissue-Engineered Skeletal Muscle and Bone Co-culture System

被引:5
|
作者
Wragg, Nicholas M. [1 ,2 ]
Mosqueira, Diogo [1 ]
Blokpeol-Ferreras, Lia [1 ]
Capel, Andrew [1 ]
Player, Darren J. [1 ,3 ]
Martin, Neil R. W. [1 ]
Liu, Yang [2 ]
Lewis, Mark P. [1 ]
机构
[1] Loughborough Univ, Sch Sport Exercise & Hlth Sci, Loughborough, Leics, England
[2] Loughborough Univ, Wolfson Sch Mech Elect & Mfg Engn, Loughborough, Leics, England
[3] RNOH Univ Coll London, Inst Orthopaed & Musculoskeletal Sci, Stanmore, Middx, England
基金
英国工程与自然科学研究理事会;
关键词
bone; co-culture; medium compatibility; skeletal muscle; tissue engineering; MARROW STROMAL CELLS; IN-VITRO; GENE-EXPRESSION; SATELLITE CELLS; C2C12; DIFFERENTIATION; CULTURE; CONTRACTILE; SCAFFOLDS; MYOBLASTS;
D O I
10.1002/biot.201900106
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
In vitro 3D tissue-engineered (TE) structures have been shown to better represent in vivo tissue morphology and biochemical pathways than monolayer culture, and are less ethically questionable than animal models. However, to create systems with even greater relevance, multiple integrated tissue systems should be recreated in vitro. In the present study, the effects and conditions most suitable for the co-culture of TE skeletal muscle and bone are investigated. High-glucose Dulbecco's modified Eagle medium (HG-DMEM) supplemented with 20% fetal bovine serum followed by HG-DMEM with 2% horse serum is found to enable proliferation of both C2C12 muscle precursor cells and TE85 human osteosarcoma cells, fusion of C2C12s into myotubes, as well as an upregulation of RUNX2/CBFa1 in TE85s. Myotube formation is also evident within indirect contact monolayer cultures. Finally, in 3D co-cultures, TE85 collagen/hydroxyapatite constructs have significantly greater expression of RUNX2/CBFa1 and osteocalcin/BGLAP in the presence of collagen-based C2C12 skeletal muscle constructs; however, fusion within these constructs appears reduced. This work demonstrates the first report of the simultaneous co-culture and differentiation of 3D TE skeletal muscle and bone, and represents a significant step toward a full in vitro 3D musculoskeletal junction model.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] A 3D engineered scaffold for hematopoietic progenitor/stem cell co-culture in vitro
    Zhou, Dezhi
    Chen, Lidan
    Ding, Jinju
    Zhang, Xiuxiu
    Nie, Zhenguo
    Li, Xinda
    Yang, Bin
    Xu, Tao
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [42] DEVELOPMENT OF A TISSUE-ENGINEERED CONSTRUCT FOR BONE REPAIR
    Sadasivan, S.
    Shaw, G.
    Murphy, M.
    Barry, F.
    OSTEOARTHRITIS AND CARTILAGE, 2015, 23 : A414 - A414
  • [43] 3D printing tissue-engineered scaffolds for auricular reconstruction
    Gao, Shuyi
    Nie, Tianqi
    Lin, Ying
    Jiang, Linlan
    Wang, Liwen
    Wu, Jun
    Jiao, Yuenong
    MATERIALS TODAY BIO, 2024, 27
  • [44] Development of bilayer tissue-engineered scaffolds: combination of 3D printing and electrospinning methodologies
    Yilmaz, Hilal
    Bedir, Tuba
    Gursoy, Sevda
    Kaya, Elif
    Senel, Ilkay
    Tinaz, Gulgun Bosgelmez
    Gunduz, Oguzhan
    Ustundag, Cem Bulent
    BIOMEDICAL MATERIALS, 2024, 19 (04)
  • [45] 3D tissue-engineered model of Ewing's sarcoma
    Lamhamedi-Cherradi, Salah-Eddine a
    Santoro, Marco
    Ramammoorthy, Vandhana
    Menegaz, Brian A.
    Bartholomeusz, Geoffrey
    Iles, Lakesla R.
    Amin, Hesham M.
    Livingston, J. Andrew
    Mikos, Antonios G.
    Ludwig, Joseph A.
    ADVANCED DRUG DELIVERY REVIEWS, 2014, 79-80 : 155 - 171
  • [46] Tissue-engineered 3D melanoma model with blood and lymphatic capillaries for drug development
    Bourland, Jennifer
    Fradette, Julie
    Auger, Francois A.
    SCIENTIFIC REPORTS, 2018, 8
  • [47] Tissue-engineered 3D melanoma model with blood and lymphatic capillaries for drug development
    Jennifer Bourland
    Julie Fradette
    François A. Auger
    Scientific Reports, 8
  • [48] Tissue-Engineered Human Skeletal Muscle Model of Rheumatoid Arthritis
    Oliver, C. E.
    Davis, B. N.
    Hong, J.
    Huffman, K. M.
    Truskey, G. A.
    TISSUE ENGINEERING PART A, 2017, 23 : S82 - S82
  • [49] Bone in vitro 3D osteoblast-osteocyte co-culture model
    Vazquez, M.
    Evans, B. A. J.
    Ralphs, J.
    Riccardi, D.
    Mason, D. J.
    INTERNATIONAL JOURNAL OF EXPERIMENTAL PATHOLOGY, 2011, 92 (06) : A18 - A18
  • [50] 3D tissue-engineered bone marrow: what does this mean for the treatment of multiple myeloma?
    de la Puente, Pilar
    Azab, Abdel Kareem
    FUTURE ONCOLOGY, 2016, 12 (13) : 1545 - 1547