Microstructure and corrosion performance of 316L stainless steel fabricated by Selective Laser Melting and processed through high-pressure torsion

被引:85
|
作者
Yusuf, Shahir Mohd [1 ]
Nie, Mengyan [2 ]
Chen, Ying [3 ]
Yang, Shoufeng [1 ,4 ]
Gao, Nong [1 ]
机构
[1] Univ Southampton, Fac Engn & Environm, Mat Res Grp, Southampton SO17 1BJ, Hants, England
[2] UCL, Inst Mat Discovery, Malet Pl, London WC1E 7JE, England
[3] Xiamen Univ Technol, Fujian Prov Key Lab Funct Mat & Applicat, Xiamen 361024, Peoples R China
[4] Katholieke Univ Leuven, Addit Mfg Res Grp, Celestijnenlaan 300,Box 2420, B-3001 Leuven, Belgium
基金
中国国家自然科学基金;
关键词
Selective laser melting; High-pressure torsion; 316L stainless steel; Microhardness; Corrosion behaviour; SEVERE PLASTIC-DEFORMATION; MECHANICAL-PROPERTIES; GRAIN-SIZE; BEHAVIOR; ALLOY; EVOLUTION; TITANIUM; RESISTANCE; MICROSCOPY; METALLURGY;
D O I
10.1016/j.jallcom.2018.05.284
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
For the first time, the novel combination of severe plastic deformation (SPD) and Additive Manufacturing (AM) in a single process sequence was explored. 316L stainless steel (316L SS) alloy was firstly fabricated by Selective Laser Melting (SLM) AM process and subsequently processed by high-pressure torsion (HPT) SPD technique under a constant pressure of 6 GPa for different torsional revolutions. All the processed samples were subjected to electrochemical testing in a 3.5 wt % NaCl aqueous solution using open-circuit potential, potentiodynamic polarisation, and electrochemical impedance spectroscopy techniques, and characterised with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The microscopic measurement results revealed that the melt pools and cellular structures obtained via SLM become increasingly refined through increased HPT revolutions, accompanied by significant porosity reduction and significant increase in microhardness. TEM observations revealed a homogeneously distributed nano-scale grains after 10 turns. Moreover, the results demonstrated that HPT processing significantly enhances corrosion performance of the 316L SS alloy in NaCl solution, due to the cellular structure refinement, homogeneous microstructure distribution, and the substantial removal of pores and defects. SEM and energy dispersive x-ray spectroscopy (EDX) analysis were also carried out on the corroded samples to determine the influence of cellular structure refinement on the corrosion characteristics of the 316L SS alloy. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:360 / 375
页数:16
相关论文
共 50 条
  • [21] Stored energy in ultrafine-grained 316L stainless steel processed by high-pressure torsion
    El-Tahawy, Moustafa
    Huang, Yi
    Um, Taekyung
    Choe, Heeman
    Labar, Janos L.
    Langdon, Terence G.
    Gubicza, Jeno
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2017, 6 (04): : 339 - 347
  • [22] Microstructural Characteristics of Stainless Steel 316L Processed by Selective Laser Melting Technology
    Ara, Ismat
    Tangpong, X. W.
    Azarmi, Fardad
    TMS 2020 149TH ANNUAL MEETING & EXHIBITION SUPPLEMENTAL PROCEEDINGS, 2020, : 405 - 412
  • [23] Investigation on Porosity and Microhardness of 316L Stainless Steel Fabricated by Selective Laser Melting
    Yusuf, Shahir Mohd
    Chen, Yifei
    Boardman, Richard
    Yang, Shoufeng
    Gao, Nong
    METALS, 2017, 7 (02):
  • [24] Spatter behavior for 316L stainless steel fabricated by selective laser melting in a vacuum
    Sato, Yuji
    Srisawadi, Sasitorn
    Tanprayoon, Dhritti
    Suga, Tetsuo
    Ohkubo, Tomomasa
    Tsukamoto, Masahiro
    OPTICS AND LASERS IN ENGINEERING, 2020, 134
  • [25] Cryogenic mechanical properties of 316L stainless steel fabricated by selective laser melting
    Wang, Chao
    Lin, Xin
    Wang, Lilin
    Zhang, Shuya
    Huang, Weidong
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 815
  • [26] Effect of solution treatment on the intergranular corrosion behavior of 316L stainless steel fabricated by selective laser melting
    Wang B.
    Shang Q.
    Man C.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2024, 46 (06): : 1077 - 1088
  • [27] Corrosion Behavior of 316L Stainless Steel Fabricated by Selective Laser Melting Under Different Scanning Speeds
    Ni, Xiaoqing
    Kong, Decheng
    Wu, Wenheng
    Zhang, Liang
    Dong, Chaofang
    He, Beibei
    Lu, Lin
    Wu, Kaiqi
    Zhu, Dexiang
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2018, 27 (07) : 3667 - 3677
  • [28] Effect of scanning strategies on the microstructure and mechanical behavior of 316L stainless steel fabricated by selective laser melting
    Song, Ya'nan
    Sun, Qidong
    Guo, Kai
    Wang, Xiebin
    Liu, Jiangwei
    Sun, Jie
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 793
  • [29] Corrosion Behavior of 316L Stainless Steel Fabricated by Selective Laser Melting Under Different Scanning Speeds
    Xiaoqing Ni
    Decheng Kong
    Wenheng Wu
    Liang Zhang
    Chaofang Dong
    Beibei He
    Lin Lu
    Kaiqi Wu
    Dexiang Zhu
    Journal of Materials Engineering and Performance, 2018, 27 : 3667 - 3677
  • [30] Effect of heat treatment on the microstructure and passive behavior of 316L stainless steel fabricated by selective laser melting
    Duan Z.-W.
    Man C.
    Cui Z.-Y.
    Dong C.-F.
    Wang X.
    Cui H.-Z.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2023, 45 (04): : 560 - 568