Coherency Matrix Estimation of Heterogeneous Clutter in High-Resolution Polarimetric SAR Images

被引:91
|
作者
Vasile, Gabriel [1 ]
Ovarlez, Jean-Philippe [2 ,3 ]
Pascal, Frederic [3 ]
Tison, Celine [4 ]
机构
[1] CNRS, Natl Council Sci Res, Grenoble Image Speech Signal Automat Lab, F-38402 Grenoble, France
[2] French Aerosp Lab ONERA, F-91761 Palaiseau, France
[3] Natl Univ Singapore, Def Sci & Technol Agcy Res Alliance, Supelec, SONDRA Lab, F-91192 Gif Sur Yvette, France
[4] Ctr Natl Etud Spatiales, F-31401 Toulouse 9, France
来源
关键词
Estimation; heterogeneous clutter; polarimetry; segmentation; synthetic aperture radar (SAR); OPTIMAL SPECKLE REDUCTION; COVARIANCE-MATRIX; UNSUPERVISED CLASSIFICATION; STATISTICAL-ANALYSIS; TARGET DETECTION; SEGMENTATION; TEXTURE; EXISTENCE; NUMBER; FILTER;
D O I
10.1109/TGRS.2009.2035496
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This paper presents an application of the recent advances in the field of spherically invariant random vector (SIRV) modeling for coherency matrix estimation in heterogeneous clutter. The complete description of the polarimetric synthetic aperture radar (POLSAR) data set is achieved by estimating the span and the normalized coherency independently. The normalized coherency describes the polarimetric diversity, while the span indicates the total received power. The main advantages of the proposed fixed-point (FP) estimator are that it does not require any a priori information about the probability density function of the texture (or span) and that it can directly be applied on adaptive neighborhoods. Interesting results are obtained when coupling this FP estimator with an adaptive spatial support based on the scalar span information. Based on the SIRV model, a new maximum-likelihood distance measure is introduced for unsupervised POLSAR classification. The proposed method is tested with both simulated POLSAR data and airborne POLSAR images provided by the Radar Aeroporte Multi-Spectral d'Etude des Signatures system. Results of entropy/alpha/anisotropy decomposition, followed by unsupervised classification, allow discussing the use of the normalized coherency and the span as two separate descriptors of POLSAR data sets.
引用
收藏
页码:1809 / 1826
页数:18
相关论文
共 50 条
  • [21] Maximum Likelihood Classification of Single High-resolution Polarimetric SAR Images in Urban Areas
    Majd, Maryam Soheili
    Simonetto, Elisabeth
    Polidori, Laurent
    [J]. PHOTOGRAMMETRIE FERNERKUNDUNG GEOINFORMATION, 2012, (04): : 395 - 407
  • [22] HIGH-RESOLUTION SAR IMAGES FOR FIRE SUSCEPTIBILITY ESTIMATION IN URBAN FORESTRY
    Canale, Silvia
    De Santis, Alberto
    Iacoviello, Daniela
    Pirri, Fiora
    Sagratella, Simone
    [J]. ISPRS HANNOVER WORKSHOP 2011: HIGH-RESOLUTION EARTH IMAGING FOR GEOSPATIAL INFORMATION, 2011, 39-4 (W19): : 69 - 74
  • [23] Statistical Modeling of Sea Clutter in High-Resolution SAR Images Using Generalized Gamma Distribution
    Qin, Xianxiang
    Zhou, Shilin
    Zou, Huanxin
    Gao, Gui
    [J]. PROCEEDINGS OF INTERNATIONAL CONFERENCE ON COMPUTER VISION IN REMOTE SENSING, 2012, : 306 - 310
  • [24] Statistical analysis of high-resolution SAR ground clutter data
    Greco, Maria S.
    Gini, Fulvio
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (03): : 566 - 575
  • [25] Polarimetric SAR Speckle Filtering for High-resolution SAR Images using RADARSAT-2 POLSAR SLC data
    Liu, Xu-nan
    Cheng, Bo
    [J]. PROCEEDINGS OF INTERNATIONAL CONFERENCE ON COMPUTER VISION IN REMOTE SENSING, 2012, : 329 - 334
  • [26] EVALUATION OF COHERENT SCATTERERS IN HIGH-RESOLUTION POLARIMETRIC SAR IMAGERY
    Wang, Yanting
    Ainsworth, Thomas L.
    Lee, Jong-Sen
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 5871 - 5874
  • [27] Wake-based ship route estimation in high-resolution SAR images
    Graziano, M. Daniela
    Rufino, Giancarlo
    D'Errico, Marco
    [J]. SAR IMAGE ANALYSIS, MODELING, AND TECHNIQUES XIV, 2014, 9243
  • [28] Flood depth estimation by means of high-resolution SAR images and lidar data
    Cian, Fabio
    Marconcini, Mattia
    Ceccato, Pietro
    Giupponi, Carlo
    [J]. NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2018, 18 (11) : 3063 - 3084
  • [29] Automatic matching of high-resolution SAR images
    Chen, F.
    Wang, C.
    Zhang, H.
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2007, 28 (16) : 3665 - 3678
  • [30] Reciprocity Evaluation in Heterogeneous Polarimetric SAR Images
    Pallotta, Luca
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19