Analysis and Optimization of the Novel Inerter-Based Dynamic Vibration Absorbers

被引:35
|
作者
Wang, Xiaoran [1 ]
Liu, Xiandong [1 ]
Shan, Yingchun [1 ]
Shen, Yongjun [2 ]
He, Tian [1 ]
机构
[1] Beihang Univ, Sch Transportat Sci & Engn, Beijing 100191, Peoples R China
[2] Shijiazhuang Tiedao Univ, Dept Mech Engn, Shijiazhuang 050043, Hebei, Peoples R China
来源
IEEE ACCESS | 2018年 / 6卷
基金
中国国家自然科学基金;
关键词
Dynamic vibration absorber; fixed-point theory; inerter; optimization; vibration absorption; NEGATIVE-STIFFNESS PHASE; COMPOSITE-MATERIALS; H-2; OPTIMIZATION; SYSTEMS; STABILITY; DESIGN;
D O I
10.1109/ACCESS.2018.2844086
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Passive dynamic vibration absorber (DVA) is widely used in structural vibration reduction, and the higher efficient DVA is always required for some special situations. This paper aims to propose the novel inerter-based dynamic vibration absorbers (IDVAs) to enhance the performance of the passive DVA. First, several novel IDVAs are presented by matching the inerter with DVA in different places. Then, the closed-form optimal parameters of six kinds of IDVAs are obtained based on the classical fixed-point theory. The obtained parameters demonstrates that all the inerters connected between the primary system and absorber system do not provide improvement for the performance of DVAs, while all the inerters connected to the earth can improve the performance of DVAs. Moreover, the comparisons among the IDVAs show that the inerter connected to the earth in the grounded DVA (IR2 in this paper) performs the best performance in vibration absorption. More than 30 % improvement can be obtained from IR2 as compared with other IDVAs. Finally, the further comparison among the IDVAs under white noise excitation also shows that IR2 is superior to other IDVAs. The results may provide theoretical basis for design of the optimal IDVA in engineering practice.
引用
收藏
页码:33169 / 33182
页数:14
相关论文
共 50 条
  • [31] A novel lever-type inerter-based vibration absorber
    Su, Ning
    Bian, Jing
    Chen, Zhaoqing
    Xia, Yi
    [J]. INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2023, 254
  • [32] Seismic protection of reinforced concrete continuous girder bridges with inerter-based vibration absorbers
    Wang, Qinhua
    Zheng, Zhiyuan
    Qiao, Haoshuai
    De Domenico, Dario
    [J]. SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2023, 164
  • [33] Dynamic characteristic analysis of the inerter-based piecewise vibration isolator under base excitation
    Dai, Jianguo
    Wang, Yong
    Wei, Minxiang
    Zhang, Wenwei
    Zhu, Jianhui
    Jin, Hao
    Jiang, Cheng
    [J]. ACTA MECHANICA, 2022, 233 (02) : 513 - 533
  • [34] Dynamic characteristic analysis of the inerter-based piecewise vibration isolator under base excitation
    Jianguo Dai
    Yong Wang
    Minxiang Wei
    Wenwei Zhang
    Jianhui Zhu
    Hao Jin
    Cheng Jiang
    [J]. Acta Mechanica, 2022, 233 : 513 - 533
  • [35] Analytical optimal design of inerter-based vibration absorbers with negative stiffness balancing static amplification and dynamic reduction effects
    Su, Ning
    Bian, Jing
    Peng, Shitao
    Chen, Zhaoqing
    Xia, Yi
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 192
  • [36] Random Response of Nonlinear System with Inerter-based Dynamic Vibration Absorber
    Wenwen Chang
    Xiaoling Jin
    Zhilong Huang
    Guoqiang Cai
    [J]. Journal of Vibration Engineering & Technologies, 2021, 9 : 1903 - 1909
  • [37] Random Response of Nonlinear System with Inerter-based Dynamic Vibration Absorber
    Chang, Wenwen
    Jin, Xiaoling
    Huang, Zhilong
    Cai, Guoqiang
    [J]. JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2021, 9 (08) : 1903 - 1909
  • [38] Performance analysis of a nonlinear inerter-based vibration isolator with inerter embedded in a linkage mechanism
    Shi, Baiyang
    Dai, Wei
    Yang, Jian
    [J]. NONLINEAR DYNAMICS, 2022, 109 (02) : 419 - 442
  • [39] Performance analysis of a nonlinear inerter-based vibration isolator with inerter embedded in a linkage mechanism
    Baiyang Shi
    Wei Dai
    Jian Yang
    [J]. Nonlinear Dynamics, 2022, 109 : 419 - 442
  • [40] Optimal Design of an Inerter-Based Dynamic Vibration Absorber Connected to Ground
    Zhou, Shaoyi
    Jean-Mistral, Claire
    Chesne, Simon
    [J]. JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2019, 141 (05):