The Kustaanheimo-Stiefel map, the Hopf fibration and the square root map on R3 and R4

被引:5
|
作者
ElBialy, Mohamed Sami [1 ]
机构
[1] Univ Toledo, Dept Math, Toledo, OH 43606 USA
关键词
Hopf fibration; Hopf map; Kustaanheimo-Stiefel transformation; Levi-Civita transformation; Hurwitz theorem; collision singularities; hypercomplex structures; quaternionic structures; circle bundles;
D O I
10.1016/j.jmaa.2006.09.079
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Kustaanheimo-Stiefel map (KSM) psi from U* := R4 \ {0} to X* := R3 \ {0} and the principal circle bundle P = (U*, psi, X*, S-1) that it induces. We show that the KSM is the appropriate generalization of the squaring map z -> z(2), z is an element of C, and not quaternion-multiplication, in that the KSM induces a principal circle bundle on S-3 -> S-2, namely the Hopf fibration, while quatermon-squaring is degenerate because the dimension of the fibers is not constant. We construct two square root branches from the upper and lower half of R-3 to R-3 (x(1))(-) where (x(1))(-) is the nonpositive x(1)-axis in R-3 and resembles the cut used to define the standard complex square root branches +/-root z. We glue these two branches together. We introduce what we like to call KS cylindrical coordinates with a 2-dimensional axis of rotation. We also introduce what we call KS torical and spherical coordinates. We use the KS cylindrical coordinates to define the full square root map on an S-1-cover of R-3 given by (R-3 x S-1)/similar to, where similar to is an equivalence relation on (x(1))(-) x S-1. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:631 / 665
页数:35
相关论文
共 50 条
  • [21] Dual relations between line congruences in R3 and surfaces in R4
    Craizer, Marcos
    Garcia, Ronaldo
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2024, 11 (02)
  • [22] R3 versus R4 Thoracoscopic Sympathectomy for Severe Palmar Hyperhidrosis
    Zhang, Wenxiong
    Wei, Yiping
    Jiang, Han
    Xu, Jianjun
    Yu, Dongliang
    THORACIC AND CARDIOVASCULAR SURGEON, 2017, 65 (06): : 491 - 496
  • [23] A REMARK ON STABLE SOLUTIONS OF NONLINEAR ELLIPTIC EQUATIONS ON R3 OR R4
    Dancer, E. N.
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2014, 27 (5-6) : 483 - 488
  • [24] Runge-Lenz vector as a 3d projection of SO(4) moment map in R4 x R4 phase space
    Ikemori, Hitoshi
    Kitakado, Shinsaku
    Matsui, Yoshimitsu
    Sato, Toshiro
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (22)
  • [25] A GAUSS-LIKE MAP ASSOCIATED TO A SURFACE IN R3
    FERREIRA, C
    MATHEMATISCHE ZEITSCHRIFT, 1992, 209 (03) : 363 - 373
  • [26] The Gauss map of pseudo-algebraic minimal surfaces in R4
    Kawakami, Yu
    MATHEMATISCHE NACHRICHTEN, 2009, 282 (02) : 211 - 218
  • [27] The gauss map and second fundamental form of surfaces in R3
    Gálvez, JA
    Martínez, A
    GEOMETRIAE DEDICATA, 2000, 81 (1-3) : 181 - 192
  • [29] Double points in families of map germs from R2 to R3
    Moya-Perez, J. A.
    Nuno-Ballesteros, J. J.
    JOURNAL OF TOPOLOGY AND ANALYSIS, 2022, 14 (01) : 93 - 110
  • [30] The doodle of a finitely determined map germ from R2 to R3
    Marar, W. L.
    Nuno-Ballesteros, J. J.
    ADVANCES IN MATHEMATICS, 2009, 221 (04) : 1281 - 1301