Thermodiffusion anisotropy under a magnetic field in ionic liquid-based ferrofluids

被引:7
|
作者
Fiuza, T. [1 ,2 ]
Sarkar, M. [1 ]
Riedl, J. C. [1 ]
Cebers, A. [3 ]
Cousin, F. [4 ]
Demouchy, G. [1 ,5 ]
Depeyrot, J. [2 ]
Dubois, E. [1 ]
Gelebart, F. [1 ]
Meriguet, G. [1 ]
Perzynski, R. [1 ]
Peyre, V [1 ]
机构
[1] Sorbonne Univ, CNRS, Lab PHENIX, 4 Pl Jussieu, F-75005 Paris, France
[2] Univ Brasilia, Inst Fis, Grp Fluidos Complexos, Brasilia, DF, Brazil
[3] Univ Latvia, Fac Phys & Math, MMML Lab, Zellu 8, LV-1002 Riga, Latvia
[4] CEA Saclay, CNRS CEA, Lab Leon Brillouin UMR 12, F-91191 Gif Sur Yvette, France
[5] Univ Cergy Pontaise, Dept Phys, 33 Bd Port, F-95011 Cergy Pontoise, France
基金
欧盟地平线“2020”;
关键词
D O I
10.1039/d0sm02190c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ferrofluids based on maghemite nanoparticles (NPs), typically 10 nm in diameter, are dispersed in an ionic liquid (1-ethyl 3-methylimidazolium bistriflimide - EMIM-TFSI). The average interparticle interaction is found to be repulsive by small angle scattering of X-rays and of neutrons, with a second virial coefficient A(2) = 7.3. A moderately concentrated sample at phi = 5.95 vol% is probed by forced Rayleigh scattering under an applied magnetic field (up to H = 100 kA m(-1)) from room temperature up to T = 460 K. Irrespective of the values of H and T, the NPs in this study are always found to migrate towards the cold region. The in-field anisotropy of the mass diffusion coefficient D-m and that of the (always positive) Soret coefficient S-T are well described by the presented model in the whole range of H and T. The main origin of anisotropy is the spatial inhomogeneities of concentration in the ferrofluid along the direction of the applied field. Since this effect originates from the magnetic dipolar interparticle interaction, the anisotropy of thermodiffusion progressively vanishes when temperature and thermal motion increase.
引用
收藏
页码:4566 / 4577
页数:12
相关论文
共 50 条
  • [21] Ionic Liquid-Based Electrolytes for Supercapacitor and Supercapattery
    Yu, Linpo
    Chen, George Z.
    [J]. FRONTIERS IN CHEMISTRY, 2019, 7
  • [22] Ionic liquid-based nanocomposites for organic transformations
    Nidhi Yadav
    Md. Ahmaruzzaman
    [J]. Journal of the Iranian Chemical Society, 2022, 19 : 4327 - 4347
  • [23] Ionic liquid-based nanocomposites for organic transformations
    Yadav, Nidhi
    Ahmaruzzaman, Md
    [J]. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY, 2022, 19 (11) : 4327 - 4347
  • [24] Ionic liquid-based electrolytes for capacitor applications
    Zhu, Qing
    Song, Ye
    Zhu, Xufei
    Wang, Xinlong
    [J]. JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2007, 601 (1-2) : 229 - 236
  • [25] Ionic liquid-based polymeric microreactors and their applicability
    Ester Weiss
    Raed Abu-Reziq
    [J]. Journal of Materials Science, 2017, 52 : 10637 - 10647
  • [26] Dynamic chemistry in ionic liquid-based conductor
    Zhiwu Chen
    Qinyuan Gui
    Yapei Wang
    [J]. Green Chemical Engineering, 2021, (04) : 346 - 358
  • [27] An Ionic Liquid-Based Actuator as a Humidity Sensor
    Must, Indrek
    Johanson, Urmas
    Kaasik, Friedrich
    Poldsalu, Inga
    Punning, Andres
    Aabloo, Alvo
    [J]. 2013 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM): MECHATRONICS FOR HUMAN WELLBEING, 2013, : 1498 - 1503
  • [28] Ionic Liquid-Based Materials for Biomedical Applications
    Correia, Daniela Maria
    Fernandes, Liliana Correia
    Fernandes, Margarida Macedo
    Hermenegildo, Bruno
    Meira, Rafaela Marques
    Ribeiro, Clarisse
    Ribeiro, Sylvie
    Reguera, Javier
    Lanceros-Mendez, Senentxu
    [J]. NANOMATERIALS, 2021, 11 (09)
  • [29] Surfactant ionic liquid-based microemulsions for polymerization
    Yan, Feng
    Texter, John
    [J]. CHEMICAL COMMUNICATIONS, 2006, (25) : 2696 - 2698
  • [30] Electrode Models for Ionic Liquid-Based Capacitors
    Breitsprecher, Konrad
    Szuttor, Kai
    Holm, Christian
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (39): : 22445 - 22451