Thermodiffusion anisotropy under a magnetic field in ionic liquid-based ferrofluids

被引:7
|
作者
Fiuza, T. [1 ,2 ]
Sarkar, M. [1 ]
Riedl, J. C. [1 ]
Cebers, A. [3 ]
Cousin, F. [4 ]
Demouchy, G. [1 ,5 ]
Depeyrot, J. [2 ]
Dubois, E. [1 ]
Gelebart, F. [1 ]
Meriguet, G. [1 ]
Perzynski, R. [1 ]
Peyre, V [1 ]
机构
[1] Sorbonne Univ, CNRS, Lab PHENIX, 4 Pl Jussieu, F-75005 Paris, France
[2] Univ Brasilia, Inst Fis, Grp Fluidos Complexos, Brasilia, DF, Brazil
[3] Univ Latvia, Fac Phys & Math, MMML Lab, Zellu 8, LV-1002 Riga, Latvia
[4] CEA Saclay, CNRS CEA, Lab Leon Brillouin UMR 12, F-91191 Gif Sur Yvette, France
[5] Univ Cergy Pontaise, Dept Phys, 33 Bd Port, F-95011 Cergy Pontoise, France
基金
欧盟地平线“2020”;
关键词
D O I
10.1039/d0sm02190c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ferrofluids based on maghemite nanoparticles (NPs), typically 10 nm in diameter, are dispersed in an ionic liquid (1-ethyl 3-methylimidazolium bistriflimide - EMIM-TFSI). The average interparticle interaction is found to be repulsive by small angle scattering of X-rays and of neutrons, with a second virial coefficient A(2) = 7.3. A moderately concentrated sample at phi = 5.95 vol% is probed by forced Rayleigh scattering under an applied magnetic field (up to H = 100 kA m(-1)) from room temperature up to T = 460 K. Irrespective of the values of H and T, the NPs in this study are always found to migrate towards the cold region. The in-field anisotropy of the mass diffusion coefficient D-m and that of the (always positive) Soret coefficient S-T are well described by the presented model in the whole range of H and T. The main origin of anisotropy is the spatial inhomogeneities of concentration in the ferrofluid along the direction of the applied field. Since this effect originates from the magnetic dipolar interparticle interaction, the anisotropy of thermodiffusion progressively vanishes when temperature and thermal motion increase.
引用
收藏
页码:4566 / 4577
页数:12
相关论文
共 50 条
  • [1] Thermodiffusion in ferrofluids in the presence of a magnetic field
    Voelker, T
    Odenbach, S
    [J]. PHYSICS OF FLUIDS, 2005, 17 (03) : 037104 - 1
  • [2] Study on the properties and stability of ionic liquid-based ferrofluids
    Wei Huang
    Xiaolei Wang
    [J]. Colloid and Polymer Science, 2012, 290 : 1695 - 1702
  • [3] Study on the properties and stability of ionic liquid-based ferrofluids
    Huang, Wei
    Wang, Xiaolei
    [J]. COLLOID AND POLYMER SCIENCE, 2012, 290 (16) : 1695 - 1702
  • [4] Steric repulsion as a way to achieve the required stability for the preparation of ionic liquid-based ferrofluids
    Rodriguez-Arco, Laura
    Lopez-Lopez, Modesto T.
    Gonzalez-Caballero, Fernando
    Duran, Juan D. G.
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2011, 357 (01) : 252 - 254
  • [5] Outgassing performance of an ionic liquid-based magnetic fluid
    Okabe, Takao
    Kondo, Yukishige
    Yoshimoto, Shigeka
    Sasaki, Shinya
    [J]. VACUUM, 2019, 164 : 34 - 40
  • [6] ILHYPOS Ionic Liquid-Based Supercapacitors
    Arbizzani, C.
    Lazzari, M.
    Soavi, F.
    Mastragostino, M.
    Conte, M.
    [J]. ELECTROCHEMISTRY: SYMPOSIUM ON INTERFACIAL ELECTROCHEMISTRY IN HONOR OF BRIAN E. CONWAY, 2010, 25 (23): : 25 - 30
  • [7] Polymerization in ionic liquid-based microemulsions
    Yuan, Chao
    Guo, Jiangna
    Si, Zhihong
    Yan, Feng
    [J]. POLYMER CHEMISTRY, 2015, 6 (22) : 4059 - 4066
  • [8] An ionic liquid-based optical thermometer
    Baker, SN
    McCleskey, TM
    Baker, GA
    [J]. IONIC LIQUIDS IIIB: FUNDAMENTALS, PROGRESS, CHALLENGES AND OPPORTUNITIES: TRANSFORMATIONS AND PROCESSES, 2005, 902 : 171 - 181
  • [9] Ionic Liquid-Based Microemulsions in Catalysis
    Hejazifar, Mahtab
    Earle, Martyn
    Seddon, Kenneth R.
    Weber, Stefan
    Zirbs, Ronald
    Bica, Katharina
    [J]. JOURNAL OF ORGANIC CHEMISTRY, 2016, 81 (24): : 12332 - 12339
  • [10] Ionic liquid-based synthesis of MXene
    Husmann, Samantha
    Budak, Oznil
    Shim, Hwirim
    Liang, Kun
    Aslan, Mesut
    Kruth, Angela
    Quade, Antje
    Naguib, Michael
    Presser, Volker
    [J]. CHEMICAL COMMUNICATIONS, 2020, 56 (75) : 11082 - 11085