A New Stabilizing Control for A Class of Nonlinear Systems

被引:0
|
作者
Chung, Chih-Hsien [1 ]
Chen, Min-Shin [1 ]
机构
[1] Natl Taiwan Univ, Dept Mech Engn, Taipei 106, Taiwan
关键词
Lipschitz nonlinearity; nonlinear system; Riccati equation; LTR control; CIRCLE; DESIGN;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper considers the stabilization problem of systems that have a linear part and a nonlinear part satisfying the Lipschitz condition. This paper proposes linear controls to stabilize such nonlinear systems. When the linear part of nonlinear system is non-minimum phase, the linear control is based on an H-infinity -like Riccati equation. When the linear part is minimum phase, the linear control is based on an LQ Riccati equation. The proposed control design does not require knowledge of the nonlinear function, and is shown to be globally stabilizing. A simulation example is given to verify the proposed control.
引用
收藏
页码:341 / 346
页数:6
相关论文
共 50 条
  • [31] Stabilizing decentralized model predictive control of nonlinear systems
    Magni, L.
    Scattolini, R.
    AUTOMATICA, 2006, 42 (07) : 1231 - 1236
  • [32] Nonlinear adaptive decentralized stabilizing control of multimachine systems
    Tsinghua Univ, Beijing, China
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2000, 24 (21): : 7 - 10
  • [33] Nonlinear adaptive decentralized stabilizing control of multimachine systems
    Hu, W
    Lu, Q
    Mei, SW
    Gao, GH
    PROCEEDINGS OF THE 3RD WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-5, 2000, : 32 - 36
  • [34] Adaptive Stabilizing Controller Design for a Class of Uncertain Feedforward Nonlinear Systems
    Shang Fang
    Liu Yun-gang
    Zhang Xian-fu
    PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 519 - 523
  • [35] Stability analysis and synthesis of stabilizing controls for a class of nonlinear mechanical systems
    A. Yu. Aleksandrov
    Nonlinear Dynamics, 2020, 100 : 3109 - 3119
  • [36] Stability analysis and synthesis of stabilizing controls for a class of nonlinear mechanical systems
    Aleksandrov, A. Yu
    NONLINEAR DYNAMICS, 2020, 100 (04) : 3109 - 3119
  • [37] Stabilizing of a Class of Nonlinear Fractional Order Systems with Input Saturation Constraint
    Vedadi, Tahmine
    Soorki, Mojtaba Naderi
    Sabahi, Hanieh
    Mehrzadsamarin, Behzad
    2021 7TH INTERNATIONAL CONFERENCE ON CONTROL, INSTRUMENTATION AND AUTOMATION (ICCIA), 2021, : 207 - 211
  • [38] A new approach for stabilizing nonlinear systems with time delays
    Er, MJ
    Lin, DH
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2002, 17 (03) : 289 - 302
  • [39] A new robust output feedback control for a class of uncertain nonlinear systems
    Jain, Jitendra Kumar
    Zhang, Weidong
    Ghosh, Sandip
    INTERNATIONAL JOURNAL OF CONTROL, 2023, 96 (04) : 962 - 973
  • [40] A New Intelligent Dynamic Control Method for a Class of Stochastic Nonlinear Systems
    Huang, Haifeng
    Shirkhani, Mohammadamin
    Tavoosi, Jafar
    Mahmoud, Omar
    MATHEMATICS, 2022, 10 (09)