Discrimination of Methicillin-Resistant Staphylococcus aureus by MALDI-TOF Mass Spectrometry with Machine Learning Techniques in Patients with Staphylococcus aureus Bacteremia

被引:6
|
作者
Kong, Po-Hsin [1 ,2 ]
Chiang, Cheng-Hsiung [3 ]
Lin, Ting-Chia [2 ,4 ]
Kuo, Shu-Chen [5 ]
Li, Chien-Feng [6 ]
Hsiung, Chao A. [3 ]
Shiue, Yow-Ling [1 ,4 ]
Chiou, Hung-Yi [3 ,7 ,8 ]
Wu, Li-Ching [1 ,2 ]
Tsou, Hsiao-Hui [3 ,9 ]
机构
[1] Natl Sun Yat Sen Univ, Inst Biomed Sci, Kaohsiung 80424, Taiwan
[2] Chi Mei Med Ctr, Ctr Precis Med, Tainan 71004, Taiwan
[3] Natl Hlth Res Inst, Inst Populat Hlth Sci, Miaoli 35053, Taiwan
[4] Natl Sun Yat Sen Univ, Inst Precis Med, Kaohsiung 80424, Taiwan
[5] Natl Hlth Res Inst, Natl Inst Infect Dis & Vaccinol, Miaoli 35053, Taiwan
[6] Chi Mei Med Ctr, Dept Med Res, Tainan 71004, Taiwan
[7] Taipei Med Univ, Coll Publ Hlth, Sch Publ Hlth, Taipei 11031, Taiwan
[8] Taipei Med Univ, Coll Publ Hlth, Masters Program Appl Epidemiol, Taipei 11031, Taiwan
[9] China Med Univ, Coll Publ Hlth, Grad Inst Biostat, Taichung 40402, Taiwan
来源
PATHOGENS | 2022年 / 11卷 / 05期
关键词
methicillin-resistant Staphylococcus aureus; Staphylococcus aureus bacteremia; antimicrobial susceptibility testing; MALDI-TOF MS; machine learning; binning method; SUPPORT VECTOR MACHINE; GENETIC ALGORITHM; IDENTIFICATION; TIME; MS; PREVALENCE; EPIDEMIOLOGY; HOSPITALS; COMMUNITY; SELECTION;
D O I
10.3390/pathogens11050586
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Early administration of proper antibiotics is considered to improve the clinical outcomes of Staphylococcus aureus bacteremia (SAB), but routine clinical antimicrobial susceptibility testing takes an additional 24 h after species identification. Recent studies elucidated matrix-assisted laser desorption/ionization time-of-flight mass spectra to discriminate methicillin-resistant strains (MRSA) or even incorporated with machine learning (ML) techniques. However, no universally applicable mass peaks were revealed, which means that the discrimination model might need to be established or calibrated by local strains' data. Here, a clinically feasible workflow was provided. We collected mass spectra from SAB patients over an 8-month duration and preprocessed by binning with reference peaks. Machine learning models were trained and tested by samples independently of the first six months and the following two months, respectively. The ML models were optimized by genetic algorithm (GA). The accuracy, sensitivity, specificity, and AUC of the independent testing of the best model, i.e., SVM, under the optimal parameters were 87%, 75%, 95%, and 87%, respectively. In summary, almost all resistant results were truly resistant, implying that physicians might escalate antibiotics for MRSA 24 h earlier. This report presents an attainable method for clinical laboratories to build an MRSA model and boost the performance using their local data.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Predictors of septic shock in patients with methicillin-resistant Staphylococcus aureus bacteremia
    Lam, Simon W.
    Bauer, Seth R.
    Neuner, Elizabeth A.
    INTERNATIONAL JOURNAL OF INFECTIOUS DISEASES, 2012, 16 (06) : E453 - E456
  • [42] PREDICTORS OF SEPTIC SHOCK IN PATIENTS WITH METHICILLIN-RESISTANT STAPHYLOCOCCUS AUREUS BACTEREMIA
    Lam, Simon
    Bauer, Seth
    Neuner, Elizabeth
    CRITICAL CARE MEDICINE, 2009, 37 (12) : A5 - A5
  • [43] Peptide Biomarker Discovery for Identification of Methicillin-Resistant and Vancomycin-Intermediate Staphylococcus aureus Strains by MALDI-TOF
    Lu, Jang-Jih
    Tsai, Fuu-Jen
    Ho, Cheng-Mao
    Liu, Yu-Ching
    Chen, Chao-Jung
    ANALYTICAL CHEMISTRY, 2012, 84 (13) : 5685 - 5692
  • [44] MALDI-TOF MS typing of a nosocomial methicillin-resistant Staphylococcus aureus outbreak in a neonatal intensive care unit
    Steensels, Deborah
    Deplano, Ariane
    Denis, Olivier
    Simon, Anne
    Verroken, Alexia
    ACTA CLINICA BELGICA, 2017, 72 (04) : 219 - 225
  • [45] The discriminatory power of MALDI-TOF mass spectrometry to differentiate between isogenic teicoplanin-susceptible and teicoplanin-resistant strains of methicillin-resistant Staphylococcus aureus
    Majcherczyk, PA
    McKenna, T
    Moreillon, P
    Vaudaux, P
    FEMS MICROBIOLOGY LETTERS, 2006, 255 (02) : 233 - 239
  • [46] Linezolid Utilization in Methicillin-Resistant Staphylococcus aureus (MRSA) Bacteremia
    Caffrey, Aisling R.
    Gupta, Kalpana
    Quilliam, Brian J.
    Friedmann, Peter D.
    LaPlante, Kerry L.
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2011, 20 : S185 - S185
  • [47] Epidemiology of Methicillin-Resistant Staphylococcus aureus Bacteremia in Gaborone, Botswana
    Wood, Sarah M.
    Shah, Samir S.
    Bafana, Margaret
    Ratner, Adam J.
    Meaney, Peter A.
    Malefho, Kolaatamo C. S.
    Steenhoff, Andrew P.
    INFECTION CONTROL AND HOSPITAL EPIDEMIOLOGY, 2009, 30 (08): : 782 - 785
  • [48] Methicillin-resistant Staphylococcus aureus bacteremia at a university hospital in Japan
    Isobe, Masaaki
    Uejima, Etsuko
    Seki, Masafumi
    Yamagishi, Yoshiaki
    Miyawaki, Koji
    Yabuno, Kaori
    Masaoka, Mari
    Hamaguchi, Shigeto
    Yoshioka, Nori
    Tomono, Kazunori
    JOURNAL OF INFECTION AND CHEMOTHERAPY, 2012, 18 (06) : 841 - 847
  • [49] Microbiological and genotypic analysis of methicillin-resistant Staphylococcus aureus bacteremia
    McCalla, Carlo
    Smyth, Davida S.
    Robinson, D. Ashley
    Steenbergen, Judith
    Luperchio, Steven A.
    Moise, Pamela A.
    Fowler, Vance G., Jr.
    Sakoulas, George
    ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2008, 52 (09) : 3441 - 3443
  • [50] SOURCES AND OUTCOME FOR METHICILLIN-RESISTANT STAPHYLOCOCCUS-AUREUS BACTEREMIA
    CAFFERKEY, MT
    HONE, R
    KEANE, CT
    JOURNAL OF HOSPITAL INFECTION, 1988, 11 (02) : 136 - 143