Discrimination of Methicillin-Resistant Staphylococcus aureus by MALDI-TOF Mass Spectrometry with Machine Learning Techniques in Patients with Staphylococcus aureus Bacteremia

被引:6
|
作者
Kong, Po-Hsin [1 ,2 ]
Chiang, Cheng-Hsiung [3 ]
Lin, Ting-Chia [2 ,4 ]
Kuo, Shu-Chen [5 ]
Li, Chien-Feng [6 ]
Hsiung, Chao A. [3 ]
Shiue, Yow-Ling [1 ,4 ]
Chiou, Hung-Yi [3 ,7 ,8 ]
Wu, Li-Ching [1 ,2 ]
Tsou, Hsiao-Hui [3 ,9 ]
机构
[1] Natl Sun Yat Sen Univ, Inst Biomed Sci, Kaohsiung 80424, Taiwan
[2] Chi Mei Med Ctr, Ctr Precis Med, Tainan 71004, Taiwan
[3] Natl Hlth Res Inst, Inst Populat Hlth Sci, Miaoli 35053, Taiwan
[4] Natl Sun Yat Sen Univ, Inst Precis Med, Kaohsiung 80424, Taiwan
[5] Natl Hlth Res Inst, Natl Inst Infect Dis & Vaccinol, Miaoli 35053, Taiwan
[6] Chi Mei Med Ctr, Dept Med Res, Tainan 71004, Taiwan
[7] Taipei Med Univ, Coll Publ Hlth, Sch Publ Hlth, Taipei 11031, Taiwan
[8] Taipei Med Univ, Coll Publ Hlth, Masters Program Appl Epidemiol, Taipei 11031, Taiwan
[9] China Med Univ, Coll Publ Hlth, Grad Inst Biostat, Taichung 40402, Taiwan
来源
PATHOGENS | 2022年 / 11卷 / 05期
关键词
methicillin-resistant Staphylococcus aureus; Staphylococcus aureus bacteremia; antimicrobial susceptibility testing; MALDI-TOF MS; machine learning; binning method; SUPPORT VECTOR MACHINE; GENETIC ALGORITHM; IDENTIFICATION; TIME; MS; PREVALENCE; EPIDEMIOLOGY; HOSPITALS; COMMUNITY; SELECTION;
D O I
10.3390/pathogens11050586
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Early administration of proper antibiotics is considered to improve the clinical outcomes of Staphylococcus aureus bacteremia (SAB), but routine clinical antimicrobial susceptibility testing takes an additional 24 h after species identification. Recent studies elucidated matrix-assisted laser desorption/ionization time-of-flight mass spectra to discriminate methicillin-resistant strains (MRSA) or even incorporated with machine learning (ML) techniques. However, no universally applicable mass peaks were revealed, which means that the discrimination model might need to be established or calibrated by local strains' data. Here, a clinically feasible workflow was provided. We collected mass spectra from SAB patients over an 8-month duration and preprocessed by binning with reference peaks. Machine learning models were trained and tested by samples independently of the first six months and the following two months, respectively. The ML models were optimized by genetic algorithm (GA). The accuracy, sensitivity, specificity, and AUC of the independent testing of the best model, i.e., SVM, under the optimal parameters were 87%, 75%, 95%, and 87%, respectively. In summary, almost all resistant results were truly resistant, implying that physicians might escalate antibiotics for MRSA 24 h earlier. This report presents an attainable method for clinical laboratories to build an MRSA model and boost the performance using their local data.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Rapid Discrimination of Methicillin-Resistant Staphylococcus aureus by MALDI-TOF MS
    Kim, Jung-Min
    Kim, Inhee
    Chung, Sung Hee
    Chung, Yousun
    Han, Minje
    Kim, Jae-Seok
    PATHOGENS, 2019, 8 (04):
  • [2] Rapid Discrimination between Methicillin-Sensitive and Methicillin-Resistant Staphylococcus aureus Using MALDI-TOF Mass Spectrometry
    Sogawa, Kazuyuki
    Watanabe, Masaharu
    IshigE', Takayuki
    SegawA', Syunsuke
    Miyabe, Akiko
    Murata, Syota
    Saito, Tomoko
    Sanda, Akihiro
    Furuhata, Katsunori
    Nomura, Fumio
    BIOCONTROL SCIENCE, 2017, 22 (03) : 163 - 169
  • [3] Rapid detection of antimicrobial resistance in methicillin-resistant Staphylococcus aureus using MALDI-TOF mass spectrometry
    Rensner, Josiah J.
    Lueth, Paul
    Bellaire, Bryan H.
    Sahin, Orhan
    Lee, Young Jin
    FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2023, 13
  • [4] MALDI-TOF MS fingerprinting allows for discrimination of major methicillin-resistant Staphylococcus aureus lineages
    Wolters, Manuel
    Rohde, Holger
    Maier, Thomas
    Belmar-Campos, Cristina
    Franke, Gefion
    Scherpe, Stefanie
    Aepfelbacher, Martin
    Christner, Martin
    INTERNATIONAL JOURNAL OF MEDICAL MICROBIOLOGY, 2011, 301 (01) : 64 - 68
  • [5] Automated categorization of methicillin-resistant Staphylococcus aureus clinical isolates into different clonal complexes by MALDI-TOF mass spectrometry
    Camoez, M.
    Sierra, J. M.
    Dominguez, M. A.
    Ferrer-Navarro, M.
    Vila, J.
    Roca, I.
    CLINICAL MICROBIOLOGY AND INFECTION, 2016, 22 (02) : 161.e1 - 161.e7
  • [6] MALDI-TOF MS platform combined with machine learning to establish a model for rapid identification of methicillin-resistant Staphylococcus aureus
    Tang, Kewen
    Tang, Dongling
    Wang, Qianyu
    Li, Congrong
    JOURNAL OF MICROBIOLOGICAL METHODS, 2021, 180
  • [7] Identification of agr-positive methicillin-resistant Staphylococcus aureus harbouring the class A mec complex by MALDI-TOF mass spectrometry
    Josten, Michaele
    Dischinger, Jasmin
    Szekat, Christiane
    Reif, Marion
    Al-Sabti, Nahed
    Sahl, Hans-Georg
    Parcina, Marijo
    Bekeredjian-Ding, Isabelle
    Bierbaum, Gabriele
    INTERNATIONAL JOURNAL OF MEDICAL MICROBIOLOGY, 2014, 304 (08) : 1018 - 1023
  • [8] Determination of methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis by MALDI-TOF MS in clinical isolates from Latvia
    Alksne, Laura
    Makarova, Svetlana
    Avsejenko, Jelena
    Cibrovska, Alla
    Trofimova, Julija
    Valcina, Olga
    CLINICAL MASS SPECTROMETRY, 2020, 16 : 33 - 39
  • [9] METHICILLIN-RESISTANT STAPHYLOCOCCUS-AUREUS BACTEREMIA
    MCDONALD, M
    HURSE, A
    SIM, KN
    MEDICAL JOURNAL OF AUSTRALIA, 1981, 2 (04) : 191 - 194
  • [10] Treatment of Methicillin-Resistant Staphylococcus aureus Bacteremia
    Choo, Eun Ju
    Chambers, Henry F.
    INFECTION AND CHEMOTHERAPY, 2016, 48 (04): : 267 - 273