Anisotropic error indicator based on Zienkiewicz-Zhu error estimator: Application to elliptic and parabolic problems

被引:86
|
作者
Picasso, M [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Dept Math, CH-1015 Lausanne, Switzerland
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2003年 / 24卷 / 04期
关键词
anisotropic a posteriori error estimates; adaptive finite elements;
D O I
10.1137/S1064827501398578
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The anisotropic error indicator presented in [M. Picasso, Comm. Numer. Methods Engrg., 19 (2003), pp. 13-23.] in the frame of the Laplace equation is extended to elliptic and parabolic problems. Our error indicator is derived using the anisotropic interpolation estimates of [L. Formaggia and S. Perotto, Numer. Math., 89 (2001), pp. 641-667; L. Formaggia and S. Perotto, Numer. Math., (2002), DOI 10.1007/s002110200415], together with a Zienkiewicz-Zhu error estimator to approach the error gradient. A numerical study of the effectivity index is proposed for elliptic, diffusion-convection, and parabolic problems. An adaptive algorithm is implemented, aimed at controlling the relative estimated error.
引用
收藏
页码:1328 / 1355
页数:28
相关论文
共 50 条
  • [41] Guaranteed a-posteriori error estimation for semi-discrete solutions of parabolic problems based on elliptic reconstruction
    Wang, D. L.
    Strouboulis, T.
    Babuska, I.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 402
  • [42] Goal-oriented error estimation based on equilibrated flux and potential reconstruction for the approximation of elliptic and parabolic problems
    Creuse, Emmanuel
    Nicaise, Serge
    Tang, Zuqi
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 146 : 323 - 338
  • [43] An a posteriori error indicator for discontinuous Galerkin approximations of fourth-order elliptic problems
    Georgoulis, Emmanuil H.
    Houston, Paul
    Virtanen, Juha
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (01) : 281 - 298
  • [44] AN A POSTERIORI ERROR ESTIMATOR FOR hp-ADAPTIVE DISCONTINUOUS GALERKIN METHODS FOR ELLIPTIC EIGENVALUE PROBLEMS
    Giani, Stefano
    Hall, Edward J. C.
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2012, 22 (10):
  • [45] An Anisotropic Recovery-Based Error Estimator for Adaptive Discontinuous Galerkin Methods
    Ferro, Nicola
    Perotto, Simona
    Cangiani, Andrea
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2022, 90 (01)
  • [46] Star-Based a Posteriori Error Estimates for Elliptic Problems
    B. Achchab
    A. Agouzal
    N. Debit
    K. Bouihat
    [J]. Journal of Scientific Computing, 2014, 60 : 184 - 202
  • [47] Star-Based a Posteriori Error Estimates for Elliptic Problems
    Achchab, B.
    Agouzal, A.
    Debit, N.
    Bouihat, K.
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2014, 60 (01) : 184 - 202
  • [48] A fully optimal anisotropic mesh adaptation method based on a hierarchical error estimator
    Bois, Richard
    Fortin, Michel
    Fortin, Andre
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 209 : 12 - 27
  • [49] An Anisotropic Recovery-Based Error Estimator for Adaptive Discontinuous Galerkin Methods
    Nicola Ferro
    Simona Perotto
    Andrea Cangiani
    [J]. Journal of Scientific Computing, 2022, 90
  • [50] An a posteriori error estimator based on shifts for positive Hermitian eigenvalue problems
    Bakhta, Athmane
    Lombardi, Damiano
    [J]. COMPTES RENDUS MATHEMATIQUE, 2018, 356 (06) : 696 - 705