Optimized finite-time performance of endoreversible quantum Carnot machine working with a squeezed bath

被引:5
|
作者
Liu, Haoguang [1 ,2 ]
He, Jizhou [1 ]
Wang, Jianhui [1 ,3 ]
机构
[1] Nanchang Univ, Dept Phys, Nanchang 330031, Peoples R China
[2] Nanchang Aeronaut Univ, Coll Sci & Technol, Nanchang 332020, Peoples R China
[3] Fudan Univ, Dept Phys, State Key Lab Surface Phys, Shanghai 200433, Peoples R China
基金
美国国家科学基金会;
关键词
HEAT ENGINES; THERMODYNAMICS; REFRIGERATORS; EFFICIENCY;
D O I
10.1063/5.0091215
中图分类号
O59 [应用物理学];
学科分类号
摘要
We consider a quantum endoreversible Carnot engine cycle and its inverse operation-Carnot refrigeration cycle, working between a hot bath of inverse temperature beta h and a cold bath at inverse temperature beta c. For the engine model, the hot bath is constructed to be squeezed, whereas for the refrigeration cycle, the cold bath is set to be squeezed. In the high-temperature limit, we analyze efficiency at maximum power and coefficient of performance at maximum figure of merit, revealing the effects of the times allocated to two thermal-contact and two adiabatic processes on the machine performance. We show that, when the total time spent along the two adiabatic processes is negligible, the efficiency at maximum power reaches its upper bound, which can be analytically expressed in terms of squeezing parameter r: eta a n a * = 1 - root sech [ 2 r ] 1 - eta C, with the Carnot efficiency eta C = 1 - beta h / beta c and the coefficient of performance at maximum figure of merit is bounded from the upper side by the analytical function: epsilon a n a * = 1 + epsilon C sech [ 2 r ] ( 1 + epsilon C ) - epsilon C - root 1+ec/sech(2r)(1+ec)-ec, where epsilon C = beta h / ( beta c - beta h ). Published under an exclusive license by AIP Publishing.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Finite-time performance of a quantum heat engine with a squeezed thermal bath
    Wang, Jianhui
    He, Jizhou
    Ma, Yongli
    [J]. PHYSICAL REVIEW E, 2019, 100 (05)
  • [2] Optimized finite-time information machine
    Bauer, Michael
    Barato, Andre C.
    Seifert, Udo
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2014,
  • [3] Power fluctuations in a finite-time quantum Carnot engine
    Denzler, Tobias
    Lutz, Eric
    [J]. PHYSICAL REVIEW RESEARCH, 2021, 3 (03):
  • [4] Performance optimization on finite-time quantum Carnot engines and refrigerators based on spin-1/2 systems driven by a squeezed reservoir
    Liu, Haoguang
    He, Jizhou
    Wang, Jianhui
    [J]. CHINESE PHYSICS B, 2023, 32 (03)
  • [5] Performance optimization on finite-time quantum Carnot engines and refrigerators based on spin-1/2 systems driven by a squeezed reservoir
    刘浩广
    何济洲
    王建辉
    [J]. Chinese Physics B, 2023, (03) : 179 - 184
  • [6] OPTIMAL FINITE-TIME ENDOREVERSIBLE PROCESSES
    SPIRKL, W
    RIES, H
    [J]. PHYSICAL REVIEW E, 1995, 52 (04): : 3485 - 3489
  • [7] Finite-time quantum entanglement in propagating squeezed microwaves
    K. G. Fedorov
    S. Pogorzalek
    U. Las Heras
    M. Sanz
    P. Yard
    P. Eder
    M. Fischer
    J. Goetz
    E. Xie
    K. Inomata
    Y. Nakamura
    R. Di Candia
    E. Solano
    A. Marx
    F. Deppe
    R. Gross
    [J]. Scientific Reports, 8
  • [8] New performance bounds for a finite-time Carnot refrigerator
    Velasco, S
    Roco, JMM
    Medina, A
    Hernandez, AC
    [J]. PHYSICAL REVIEW LETTERS, 1997, 78 (17) : 3241 - 3244
  • [9] ENDOREVERSIBLE ENGINES WITH FINITE-TIME ADIABATS
    AGRAWAL, DC
    GORDON, JM
    HULEIHIL, M
    [J]. INDIAN JOURNAL OF ENGINEERING AND MATERIALS SCIENCES, 1994, 1 (04) : 195 - 198
  • [10] Finite-time quantum entanglement in propagating squeezed microwaves
    Fedorov, K. G.
    Pogorzalek, S.
    Heras, U. Las
    Sanz, M.
    Yard, P.
    Eder, P.
    Fischer, M.
    Goetz, J.
    Xie, E.
    Inomata, K.
    Nakamura, Y.
    Di Candia, R.
    Solano, E.
    Marx, A.
    Deppe, F.
    Gross, R.
    [J]. SCIENTIFIC REPORTS, 2018, 8