Finite-time performance of a quantum heat engine with a squeezed thermal bath

被引:27
|
作者
Wang, Jianhui [1 ,2 ,3 ]
He, Jizhou [1 ]
Ma, Yongli [2 ,3 ]
机构
[1] Nanchang Univ, Dept Phys, Nanchang 330031, Jiangxi, Peoples R China
[2] Fudan Univ, State Key Lab Surface Phys, Shanghai 200433, Peoples R China
[3] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China
关键词
STATES; POWER;
D O I
10.1103/PhysRevE.100.052126
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider the finite-time performance of a quantum Otto engine working between a hot squeezed and a cold thermal bath at inverse temperatures beta(h) and beta(c) (> beta(h)) with (k(B) 1)beta = 1/T . We derive the analytical expressions for work, efficiency, power, and power fluctuations, in which the squeezing parameter is involved. By optimizing the power output with respect to two frequencies, we derive the efficiency at maximum power as eta(mp) = (eta(gen)(C))(2)/[eta(gen)(C) - (1 - eta(gen)(C)) ln(1 - eta(gen)(C)], where the generalized Carnot efficiency eta(gen)(C) in the high-temperature or small squeezing limit simplifies to an analytic function of squeezing parameter gamma: eta(gen)(C) = 1 - beta(h)/[beta(c) cosh(2 gamma)]. Within the context of irreversible thermodynamics, we demonstrate that the expression of efficiency at maximum power satisfies a general form derived from nonlinear steady state heat engines. We show that, the power fluctuations are considerably increased, although the engine efficiency is enhanced by squeezing.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Finite time thermodynamic analysis of quantum Otto heat engine with squeezed thermal bath
    Xiao, Bo
    Li, Renfu
    [J]. PHYSICS LETTERS A, 2018, 382 (42-43) : 3051 - 3057
  • [2] Optimized finite-time performance of endoreversible quantum Carnot machine working with a squeezed bath
    Liu, Haoguang
    He, Jizhou
    Wang, Jianhui
    [J]. JOURNAL OF APPLIED PHYSICS, 2022, 131 (21)
  • [3] Finite-time quantum Stirling heat engine
    Hamedani Raja, S.
    Maniscalco, S.
    Paraoanu, G. S.
    Pekola, J. P.
    Lo Gullo, N.
    [J]. NEW JOURNAL OF PHYSICS, 2021, 23 (03):
  • [4] Finite-time optimization of a quantum Szilard heat engine
    Zhou, Tan-Ji
    Ma, Yu-Han
    Sun, C.P.
    [J]. Physical Review Research, 2024, 6 (04):
  • [5] Finite-time exergoeconomic performance bound for a quantum Stirling engine
    Wu, F
    Chen, LG
    Sun, FR
    Wu, C
    [J]. INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2000, 38 (02) : 239 - 247
  • [6] FINITE-TIME OPTIMIZATIONS OF A HEAT ENGINE
    LEE, WY
    KIM, SS
    WON, SH
    [J]. ENERGY, 1990, 15 (11) : 979 - 985
  • [7] Finite-time quantum entanglement in propagating squeezed microwaves
    K. G. Fedorov
    S. Pogorzalek
    U. Las Heras
    M. Sanz
    P. Yard
    P. Eder
    M. Fischer
    J. Goetz
    E. Xie
    K. Inomata
    Y. Nakamura
    R. Di Candia
    E. Solano
    A. Marx
    F. Deppe
    R. Gross
    [J]. Scientific Reports, 8
  • [8] Finite-time quantum entanglement in propagating squeezed microwaves
    Fedorov, K. G.
    Pogorzalek, S.
    Heras, U. Las
    Sanz, M.
    Yard, P.
    Eder, P.
    Fischer, M.
    Goetz, J.
    Xie, E.
    Inomata, K.
    Nakamura, Y.
    Di Candia, R.
    Solano, E.
    Marx, A.
    Deppe, F.
    Gross, R.
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [9] Quantum Stirling heat engine with squeezed thermal reservoir
    Nikolaos Papadatos
    [J]. Chinese Physics B, 2023, 32 (10) : 451 - 458
  • [10] Quantum Stirling heat engine with squeezed thermal reservoir
    Papadatos, Nikolaos
    [J]. CHINESE PHYSICS B, 2023, 32 (10)