GPR Data Analysis for Accurate Estimation of Underground Utilities Diameter

被引:0
|
作者
Ghozzi, Rim [1 ,2 ]
Lahouar, Samer [1 ,3 ]
Souani, Chokri [1 ,4 ]
机构
[1] Univ Monastir, Fac Sci Monastir, Lab Microelect & Instrumentat, Monastir 5000, Tunisia
[2] Univ Sousse, Ecole Natl Ingenieurs Sousse, Technopole Sousse Novat City, Sousse 4023, Tunisia
[3] CRMN, Ctr Res Microelect & Nanotechnol, Technopole Sousse Novat City, Sousse 4054, Tunisia
[4] Univ Sousse, Inst Super Sci Appl & Technol Sousse, Sousse 4003, Tunisia
关键词
cylindrical object diameter estimation; ground penetrating radar (GPR); hyperbolic reflection; nondestructive testing (NDT); sensitivity analysis (SA);
D O I
10.1134/S106183092203007X
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Ground penetrating radar (GPR) is a remote sensing technique capable of non-destructively detecting and locating subterranean utilities. However, estimating the diameter of these utilities from raw GPR scans remains problematic. An accurate measurement cannot be obtained directly from the results of the GPR scan data. This article analyses the GPR scans for measuring the diameter in a homogenous medium of the underground utilities. The analysis is based on a geometrical and mathematical model. Uncertainty of the model parameters is also examined to characterize the differences between the actual output values and the model output values. The two factors of uncertainty that are used in this analysis are the depth and the relative permittivity of the target. The GPR scan data used in the analysis was generated using the numerical simulator gprMax, which uses the finite-difference time-domain (FDTD) method. Also, experimental data is used to estimate the diameter of buried water pipes. This paper improves the estimation of the diameter of buried utilities in a homogeneous medium. The simulation results confirm the validity of the model to attain this objective.
引用
收藏
页码:195 / 204
页数:10
相关论文
共 50 条
  • [31] Analysis of Parameters for the Accurate and Fast Estimation of Tree Diameter at Breast Height Based on Simulated Point Cloud
    Wang, Pei
    Gan, Xiaozheng
    Zhang, Qing
    Bu, Guochao
    Li, Li
    Xu, Xiuxian
    Li, Yaxin
    Liu, Zichu
    Xiao, Xiangming
    [J]. REMOTE SENSING, 2019, 11 (22)
  • [32] Accurate imaging of multicomponent GPR data based on exact radiation patterns
    Streich, Rita
    van der Kruk, Jan
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (01): : 93 - 103
  • [33] Data fusion for accurate characterisation of buried cylindrical objects using GPR
    Al-Nuaimy, W
    Shihab, S
    Eriksen, A
    [J]. PROCEEDINGS OF THE TENTH INTERNATIONAL CONFERENCE ON GROUND PENETRATING RADAR, VOLS 1 AND 2, 2004, : 359 - 362
  • [34] Simultaneous Estimation of Rebar Diameter and Cover Thickness by a GPR-EMI Dual Sensor
    Zhou, Feng
    Chen, Zhongchang
    Liu, Hai
    Cui, Jie
    Spencer, Billie E.
    Fang, Guangyou
    [J]. SENSORS, 2018, 18 (09)
  • [35] Standard palettes for GPR data analysis
    Hunt, LD
    Massie, D
    Cull, JP
    [J]. GPR 2000: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON GROUND PENETRATING RADAR, 2000, 4084 : 341 - 345
  • [36] Applying AVO analysis to GPR data
    Baker, GS
    [J]. GEOPHYSICAL RESEARCH LETTERS, 1998, 25 (03) : 397 - 400
  • [37] Sensitivity analysis on GPR A-scan data for cavity detection based on area estimation approach
    Kim, J.
    Nam, B. H.
    Youn, H.
    [J]. GEOSHANGHAI 2024 INTERNATIONAL CONFERENCE, VOL 4, 2024, 1333
  • [38] Accurate root length and diameter measurement using NIH Image: use of Pythagorean distance for diameter estimation
    K. Kimura
    S. Yamasaki
    [J]. Plant and Soil, 2003, 254 : 305 - 315
  • [39] Accurate root length and diameter measurement using NIH Image: use of Pythagorean distance for diameter estimation
    Kimura, K
    Yamasaki, S
    [J]. PLANT AND SOIL, 2003, 254 (02) : 305 - 315
  • [40] Underground Object Classification for Urban Roads Using Instantaneous Phase Analysis of Ground-Penetrating Radar (GPR) Data
    Park, Byeongjin
    Kim, Jeongguk
    Lee, Jaesun
    Kang, Man-Sung
    An, Yun-Kyu
    [J]. REMOTE SENSING, 2018, 10 (09)