GPR Data Analysis for Accurate Estimation of Underground Utilities Diameter

被引:0
|
作者
Ghozzi, Rim [1 ,2 ]
Lahouar, Samer [1 ,3 ]
Souani, Chokri [1 ,4 ]
机构
[1] Univ Monastir, Fac Sci Monastir, Lab Microelect & Instrumentat, Monastir 5000, Tunisia
[2] Univ Sousse, Ecole Natl Ingenieurs Sousse, Technopole Sousse Novat City, Sousse 4023, Tunisia
[3] CRMN, Ctr Res Microelect & Nanotechnol, Technopole Sousse Novat City, Sousse 4054, Tunisia
[4] Univ Sousse, Inst Super Sci Appl & Technol Sousse, Sousse 4003, Tunisia
关键词
cylindrical object diameter estimation; ground penetrating radar (GPR); hyperbolic reflection; nondestructive testing (NDT); sensitivity analysis (SA);
D O I
10.1134/S106183092203007X
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Ground penetrating radar (GPR) is a remote sensing technique capable of non-destructively detecting and locating subterranean utilities. However, estimating the diameter of these utilities from raw GPR scans remains problematic. An accurate measurement cannot be obtained directly from the results of the GPR scan data. This article analyses the GPR scans for measuring the diameter in a homogenous medium of the underground utilities. The analysis is based on a geometrical and mathematical model. Uncertainty of the model parameters is also examined to characterize the differences between the actual output values and the model output values. The two factors of uncertainty that are used in this analysis are the depth and the relative permittivity of the target. The GPR scan data used in the analysis was generated using the numerical simulator gprMax, which uses the finite-difference time-domain (FDTD) method. Also, experimental data is used to estimate the diameter of buried water pipes. This paper improves the estimation of the diameter of buried utilities in a homogeneous medium. The simulation results confirm the validity of the model to attain this objective.
引用
收藏
页码:195 / 204
页数:10
相关论文
共 50 条
  • [1] GPR Data Analysis for Accurate Estimation of Underground Utilities Diameter
    Rim Ghozzi
    Samer Lahouar
    Chokri Souani
    [J]. Russian Journal of Nondestructive Testing, 2022, 58 : 195 - 204
  • [2] The Design of a GPR Test Site for Underground Utilities
    Hussin, W. M. A. Wan
    Alhasanat, Mahmoud Bashir
    [J]. PIERS 2011 MARRAKESH: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, 2011, : 1864 - 1867
  • [3] On the application of GPR for locating underground utilities in urban areas
    Rashed, Mohamed A.
    Al-Garni, Mansour A.
    [J]. ARABIAN JOURNAL OF GEOSCIENCES, 2013, 6 (09) : 3505 - 3511
  • [4] On the application of GPR for locating underground utilities in urban areas
    Mohamed A. Rashed
    Mansour A. Al-Garni
    [J]. Arabian Journal of Geosciences, 2013, 6 : 3505 - 3511
  • [5] Estimating Features of Underground Utilities: Hybrid GPR/GPS Approach
    Li, Shuai
    Cai, Hubo
    Abraham, Dulcy M.
    Mao, Peng
    [J]. JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 2016, 30 (01)
  • [6] Detection of landmines and underground utilities from acoustic and GPR images with a cepstral approach
    Khan, Umar S.
    Al-Nuaimy, Waleed
    Abd El-Samie, Fathi E.
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2010, 21 (07) : 731 - 740
  • [7] GPR-based Model Reconstruction System for Underground Utilities Using GPRNet
    Feng, Jinglun
    Yang, Liang
    Hoxha, Ejup
    Sanakov, Diar
    Sotnikov, Stanislav
    Xiao, Jizhong
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 845 - 851
  • [8] Accuracy Tests and Precision Assessment of Localizing Underground Utilities Using GPR Detection
    Karsznia, Krzysztof Ryszard
    Onyszko, Klaudia
    Borkowska, Sylwia
    [J]. SENSORS, 2021, 21 (20)
  • [9] GAN–XGB–cavity: automated estimation of underground cavities’ properties using GPR data
    Van Phuc Tran
    Son Dong Nguyen
    Hyun Jong Lee
    Thai Son Tran
    Carlo Elipse
    [J]. Neural Computing and Applications, 2023, 35 : 18357 - 18376
  • [10] End-to-end deep learning model for underground utilities localization using GPR
    Su, Yang
    Wang, Jun
    Li, Danqi
    Wang, Xiangyu
    Hu, Lei
    Yao, Yuan
    Kang, Yuanxin
    [J]. AUTOMATION IN CONSTRUCTION, 2023, 149