Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis

被引:346
|
作者
Jeffries, Thomas W.
Grigoriev, Igor V.
Grimwood, Jane
Laplaza, Jose M.
Aerts, Andrea
Salamov, Asaf
Schmutz, Jeremy
Lindquist, Erika
Dehal, Paramvir
Shapiro, Harris
Jin, Yong-Su
Passoth, Volkmar
Richardson, Paul M.
机构
[1] US Forest Serv, Forest Prod Lab, USDA, Madison, WI 53705 USA
[2] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA
[3] DOE Joint Genome Inst, Walnut Creek, CA 94598 USA
[4] Stanford Univ, Human Genome Ctr, JGI Stanford, Palo Alto, CA 94304 USA
[5] Cargill, BioTechnol Dev Ctr, Minneapolis, MN 55440 USA
[6] Sungkyunkwan Univ, Dept Food Sci & Biotechnol, Suwon, South Korea
[7] Swedish Univ Agr Sci, Dept Microbiol, S-75007 Uppsala, Sweden
关键词
D O I
10.1038/nbt1290
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Xylose is a major constituent of plant lignocellulose, and its fermentation is important for the bioconversion of plant biomass to fuels and chemicals. Pichia stipitis is a well-studied, native xylose-fermenting yeast. The mechanism and regulation of xylose metabolism in P. stipitis have been characterized and genes from P. stipitis have been used to engineer xylose metabolism in Saccharomyces cerevisiae. We have sequenced and assembled the complete genome of P. stipitis. The sequence data have revealed unusual aspects of genome organization, numerous genes for bioconversion, a preliminary insight into regulation of central metabolic pathways and several examples of colocalized genes with related functions. The genome sequence provides insight into how P. stipitis regulates its redox balance while very efficiently fermenting xylose under microaerobic conditions.
引用
收藏
页码:319 / 326
页数:8
相关论文
共 50 条
  • [31] A genetic transformation protocol for the xylose-fermenting yeast Spathaspora passalidarum
    Chen, Yefu
    Huang, Wenlian
    Fu, Gengxin
    Guo, Jian
    Liu, Mingming
    Guo, Xuewu
    Xiao, Dong-Guang
    [J]. ENGINEERING IN LIFE SCIENCES, 2015, 15 (05): : 550 - 555
  • [32] Xylulose fermentation by Saccharomyces cerevisiae and xylose-fermenting yeast strains
    Yu, S
    Jeppsson, H
    HahnHagerdal, B
    [J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1995, 44 (3-4) : 314 - 320
  • [33] Bioethanol production from ball milled bagasse using an on-site produced fungal enzyme cocktail and xylose-fermenting Pichia stipitis
    Buaban, Benchaporn
    Inoue, Hiroyuki
    Yano, Shinichi
    Tanapongpipat, Sutipa
    Ruanglek, Vasimon
    Champreda, Verawat
    Pichyangkura, Rath
    Rengpipat, Sirirat
    Eurwilaichitr, Lily
    [J]. JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2010, 110 (01) : 18 - 25
  • [34] The positive effect of the decreased NADPH-preferring activity of xylose reductase from Pichia stipitis on ethanol production using xylose-fermenting recombinant Saccharomyces cerevisiae
    Watanabe, Seiya
    Pack, Seung Pil
    Abu Saleh, Ahmed
    Annaluru, Narayana
    Kodaki, Tsutomu
    Makino, Keisuke
    [J]. BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 2007, 71 (05) : 1365 - 1369
  • [35] FORMATION OF SPHEROPLASTS AND PROTOPLASTS IN THE XYLOSE-FERMENTING YEAST PACHYSOLEN-TANNOPHILUS
    KAVANAGH, K
    WHITTAKER, PA
    [J]. BIOTECHNOLOGY AND APPLIED BIOCHEMISTRY, 1990, 12 (01) : 57 - 62
  • [36] INHIBITORS OF XYLOSE REDUCTASE FROM THE YEAST PICHIA-STIPITIS
    WEBB, SR
    LEE, H
    [J]. APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 1991, 30 (03) : 325 - 337
  • [37] TRANSPORT OF HEMICELLULOSE MONOMERS IN THE XYLOSE-FERMENTING YEAST CANDIDA-SHEHATAE
    LUCAS, C
    VANUDEN, N
    [J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1986, 23 (06) : 491 - 495
  • [38] Proteome analysis of the xylose-fermenting mutant yeast strain TMB 3400
    Karhumaa, Kaisa
    Pahlman, Anna-Karin
    Hahn-Hagerdal, Barbel
    Levander, Fredrik
    Gorwa-Grauslund, Marie-F.
    [J]. YEAST, 2009, 26 (07) : 371 - 382
  • [39] Construction of efficient xylose-fermenting Saccharomyces cerevisiae through a synthetic isozyme system of xylose reductase from Scheffersomyces stipitis
    Jo, Jung-Hyun
    Park, Yong-Cheol
    Jin, Yong-Su
    Seo, Jin-Ho
    [J]. BIORESOURCE TECHNOLOGY, 2017, 241 : 88 - 94
  • [40] Improved ethanol production by a xylose-fermenting recombinant yeast strain constructed through a modified genome shuffling method
    Wei Zhang
    Anli Geng
    [J]. Biotechnology for Biofuels, 5