Rotation-invariant features for texture image classification

被引:0
|
作者
Jalil, A. [1 ]
Qureshi, I. M. [1 ]
Manzar, A. [1 ]
Zahoor, R. A. [1 ]
机构
[1] Muhammad Ali Jinnah Univ, Islamabad Campus, Islamabad, Pakistan
关键词
rotation invariant; texture analysis; principal component analysis; wavelet transform;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Texture features based on wavelet transform are sensitive to texture rotation and translation.. This paper develops a new rotation invariant texture analysis technique using Principal Components Analysis (PCA) and wavelet transform. The PCA is first used to calculate the angle of the principal direction of the texture. Then, the texture is rotated in the opposite direction by the same angle as detected by PCA. Finally a wavelet transform is applied to the preprocessed texture to extract features which are rotation invariant.
引用
收藏
页码:42 / +
页数:3
相关论文
共 50 条
  • [41] Learning How to Extract Rotation-Invariant and Scale-Invariant Features from Texture Images
    Javier A. Montoya-Zegarra
    João Paulo Papa
    Neucimar J. Leite
    Ricardo da Silva Torres
    Alexandre Falcão
    [J]. EURASIP Journal on Advances in Signal Processing, 2008
  • [42] Noise robust rotation invariant features for texture classification
    Maani, Rouzbeh
    Kalra, Sanjay
    Yang, Yee-Hong
    [J]. PATTERN RECOGNITION, 2013, 46 (08) : 2103 - 2116
  • [43] A New Rotation-Invariant Approach for Texture Analysis
    Hamouchene, Izem
    Aouat, Saliha
    [J]. COMPUTER SCIENCE AND ITS APPLICATIONS, CIIA 2015, 2015, 456 : 45 - 53
  • [44] LETRIST: Locally Encoded Transform Feature Histogram for Rotation-Invariant Texture Classification
    Song, Tiecheng
    Li, Hongliang
    Meng, Fanman
    Wu, Qingbo
    Cai, Jianfei
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2018, 28 (07) : 1565 - 1579
  • [45] Rotation-invariant texture classification using a complete space-frequency model
    Haley, GM
    Manjunath, BS
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 1999, 8 (02) : 255 - 269
  • [46] Rotation-invariant texture analysis and classification by artificial neural networks and wavelet transform
    Haşiloǧlu, A.
    [J]. Turkish Journal of Engineering and Environmental Sciences, 2001, 25 (05): : 405 - 413
  • [47] A new approach for rotation-invariant and noise-resistant texture analysis and classification
    Feraidooni, Mohammad Mahdi
    Gharavian, Davood
    [J]. MACHINE VISION AND APPLICATIONS, 2018, 29 (03) : 455 - 466
  • [48] ROTATION-INVARIANT LOCAL RADIUS INDEX: A COMPACT TEXTURE SIMILARITY FEATURE FOR CLASSIFICATION
    Zhai, Yuanhao
    Neuhoff, David L.
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 5711 - 5715
  • [49] Algorithm for rotation-invariant texture image retrieval based on Log Gabor wavelet
    Wu, Ya-Hui
    Wang, Cheng-Ru
    Gu, Guang-Hua
    [J]. Guangxue Jishu/Optical Technique, 2006, 32 (01): : 92 - 94
  • [50] A new approach for rotation-invariant and noise-resistant texture analysis and classification
    Mohammad Mahdi Feraidooni
    Davood Gharavian
    [J]. Machine Vision and Applications, 2018, 29 : 455 - 466