Ergodicity of the Weil-Petersson Geodesic Flow

被引:0
|
作者
Burns, Keith [1 ]
Masur, Howard [2 ]
Wilkinson, Amie [2 ]
机构
[1] Northwestern Univ, Dept Math, 2033 Sheridan Rd, Evanston, IL 60208 USA
[2] Univ Chicago, Dept Math, 5734 S Univ Ave, Chicago, IL 60637 USA
来源
关键词
SURFACES; SPACE; DIMENSION; EXTENSION;
D O I
10.1007/978-3-319-43059-1_4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:157 / 174
页数:18
相关论文
共 50 条
  • [21] Systole functions and Weil-Petersson geometry
    Wu, Yunhui
    MATHEMATISCHE ANNALEN, 2024, 389 (02) : 1405 - 1440
  • [22] Weil-Petersson Teichmuller space revisited
    Wu, Li
    Hu, Yun
    Shen, Yuliang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 491 (01)
  • [23] DYNAMICAL PROPERTIES OF THE WEIL-PETERSSON METRIC
    Hamenstaedt, Ursula
    IN THE TRADITION OF AHLFORS-BERS, V, 2010, 510 : 109 - 127
  • [24] Thermodynamics, dimension and the Weil-Petersson metric
    McMullen, Curtis T.
    INVENTIONES MATHEMATICAE, 2008, 173 (02) : 365 - 425
  • [25] Limit Sets of Weil-Petersson Geodesics
    Brock, Jeffrey
    Leininger, Christopher
    Modami, Babak
    Rafi, Kasra
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (24) : 7604 - 7658
  • [26] Uniform bounds for Weil-Petersson curvatures
    Wolf, Michael
    Wu, Yunhui
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2018, 117 : 1041 - 1076
  • [27] The Weil-Petersson current on Douady spaces
    Axelsson, Reynir
    Schumacher, Georg
    MATHEMATISCHE NACHRICHTEN, 2021, 294 (04) : 638 - 656
  • [28] Weil-Petersson volumes and cone surfaces
    Do, Norman
    Norbury, Paul
    GEOMETRIAE DEDICATA, 2009, 141 (01) : 93 - 107
  • [29] INFINITESIMAL CONJUGACIES AND WEIL-PETERSSON METRIC
    FATHI, A
    FLAMINIO, L
    ANNALES DE L INSTITUT FOURIER, 1993, 43 (01) : 279 - 299
  • [30] Recurrent Weil-Petersson geodesic rays with non-uniquely ergodic ending laminations
    Brock, Jeffrey
    Modami, Babak
    GEOMETRY & TOPOLOGY, 2015, 19 (06) : 3565 - 3601