To facilitate the creation, modification, and optimization of patient-specific plates for distal femur fractures, a novel approach was proposed for the rapid and convenient design of patient-specific plates for patients' fractured femurs using feature parameterization. First, several femur parameter values were obtained for a specific patient and used to construct a restored surface model of the fractured femur. Next, combined with the particular femur anatomy and the fracture, a parameterized plate with a suitable shape was created automatically based on the parameter maps between the femur and plate. Finally, using finite-element analysis, the Von Mises stresses of the plate under human gait loads were calculated to evaluate the biomechanical performance of the plate, and the plate was optimized for specific patients by recursively adjusting the parameter values. Case results indicate that patient-specific plate models can be created rapidly based on the fractured femur modes of patients and can be optimized efficiently with high-level semantic parameters. Therefore, the proposed approach may be used as a basic tool for the design and modification of patient-specific plates for use in orthopedic operations.