Improving Co-expressed Gene Pattern Finding Using Gene Ontology

被引:0
|
作者
Baishya, R. C. [1 ]
Sarmah, Rosy [1 ]
Bhattacharyya, D. K. [1 ]
机构
[1] Tezpur Univ, Tezpur, Assam, India
关键词
Gene expression data; Gene ontology; Graph-based clustering; Clique; P value; EXPRESSION; INTEGRATION;
D O I
10.1007/978-3-030-39033-4_20
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A semi-supervised gene co-expressed pattern finding method, PatGeneClus is presented in this paper. PatGeneClus attempts to find all possible biologically relevant gene coherent patterns from any microarray dataset by exploiting both gene expression similarity as well as GO-similarity. PatGeneClus uses a graph-based clustering algorithm called DClique to generate a set of clusters of high biological relevance. We establish the effectiveness of PatGeneClus over several benchmark datasets usingwell-known validity measures. The clusters obtained by PatGeneClus have been found to be biologically significant due to their high p-values, Q-values and clustalW scores.
引用
收藏
页码:211 / 225
页数:15
相关论文
共 50 条
  • [31] Improving disease gene prioritization using the semantic similarity of Gene Ontology terms
    Schlicker, Andreas
    Lengauer, Thomas
    Albrecht, Mario
    BIOINFORMATICS, 2010, 26 (18) : i561 - i567
  • [32] Ptch2, a second mouse Patched gene is co-expressed with Sonic hedgehog
    Jun Motoyama
    Takashi Takabatake
    Kazuhito Takeshima
    Chi-chung Hui
    Nature Genetics, 1998, 18 : 104 - 106
  • [33] Human gene correlation analysis (HGCA): A tool for the identification of transcriptionally co-expressed genes
    Ioannis Michalopoulos
    Georgios A Pavlopoulos
    Apostolos Malatras
    Alexandros Karelas
    Myrto-Areti Kostadima
    Reinhard Schneider
    Sophia Kossida
    BMC Research Notes, 5 (1)
  • [34] Co-expressed gene groups analysis (CGGA): An automatic tool for the interpretation of microarray experiments
    Martinez, Ricardo
    Pasquier, Nicolas
    Collard, Martine
    Pasquier, Claude
    Lopez-Perez, Lucero
    JOURNAL OF INTEGRATIVE BIOINFORMATICS, 2006, 3 (02): : 188 - 198
  • [35] Conserved Non-Coding Regulatory Signatures in Arabidopsis Co-Expressed Gene Modules
    Spangler, Jacob B.
    Ficklin, Stephen P.
    Luo, Feng
    Freeling, Michael
    Feltus, F. Alex
    PLOS ONE, 2012, 7 (09):
  • [36] Significance analysis and improved discovery of differentially co-expressed gene sets in microarray data
    Li, Haixia
    Karuturi, R. Krishna Murthy
    ICDM 2006: SIXTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, WORKSHOPS, 2006, : 196 - +
  • [37] Genomic positions of co-expressed genes: Echoes of chromosome organisation in gene expression data
    Szczepińska T.
    Pawłowski K.
    BMC Research Notes, 6 (1)
  • [38] Gene Expression Profiling Identifies IGFBP7 as a BAALC Co-Expressed Gene with a Functional Role in Acute Leukemia
    Heesch, Sandra
    Schlee, Cornelia
    Neumann, Martin
    Stroux, Andrea
    Kuehnl, Andrea
    Schwartz, Stefan
    Haferlach, Torsten
    Goekbuget, Nicola
    Hoelzer, Dieter
    Hofmann, Wolf-Karsten
    Thiel, Eckhard
    Baldus, Claudia D.
    BLOOD, 2009, 114 (22) : 1031 - 1031
  • [39] Co-Expressed Gene Assessment Based on the Path Consistency Algorithm: Operon Detention in Escherichia coli
    Saito, Shigeru
    Horimoto, Katsuhisa
    2009 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2009), VOLS 1-9, 2009, : 4280 - +
  • [40] Covariance thresholding to detect differentially co-expressed genes from microarray gene expression data
    Oh, Mingyu
    Kim, Kipoong
    Sun, Hokeun
    JOURNAL OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2020, 18 (01)