Synthesis of Si-Based High-Efficiency and High-Durability Superhydrophilic-Underwater Superoleophobic Membrane of Oil-Water Separation

被引:2
|
作者
Fang, Xiao-Hui [1 ,2 ]
Chen, Su-Hui [1 ]
Yi, Lan-Lin [1 ,2 ]
Yin, Zhong-Bin [1 ,2 ]
Chen, Yong-Jun [1 ]
Jiang, Hong [1 ]
Li, Chang-Jiu [1 ,2 ]
机构
[1] Hainan Univ, State Key Lab Marine Resource Utilizat South Chin, Special Glass Key Lab Hainan Prov, Haikou 570228, Hainan, Peoples R China
[2] Minist Educ, Key Lab Adv Mat Trop Isl Resources, Haikou 570228, Hainan, Peoples R China
基金
海南省自然科学基金;
关键词
one-step hydrothermal process; SiO2-Na2SiO3-coated SSF; oil-water separation; excellent performance; OIL/WATER SEPARATION; COATED MESHES; FACILE PREPARATION; FABRICATION; COATINGS; GROWTH;
D O I
10.3390/ma14102628
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Oil pollution is caused by the frequent discharge of contaminated industrial wastewater and accidental oil spills and is a severe environmental and health concern. Therefore, efficient materials and processes for effective oil-water separation are being developed. Herein, SiO2-Na2SiO3-coated stainless steel fibers (SSF) with underwater superoleophobic and low-adhesion properties were successfully prepared via a one-step hydrothermal process. The modified surfaces were characterized with scanning electron microscopy (SEM), and contact angle measurements to observe the surface morphology, confirm the successful incorporation of SiO2, and evaluate the wettability, as well as with X-ray diffraction (XRD). The results revealed that SiO2 nanoparticles were successfully grown on the stainless-steel fiber surface through the facile hydrothermal synthesis, and the formation of sodium silicate was detected with XRD. The SiO2-Na2SiO3-coated SSF surface exhibited superior underwater superoleophobic properties (153-162 degrees), super-hydrophilicity and high separation efficiency for dichloromethane-water, n-hexane-water, tetrachloromethane-water, paroline-water, and hexadecane-water mixtures. In addition, the as-prepared SiO2-Na2SiO3-coated SSF demonstrated superior wear resistance, long-term stability, and re-usability. We suggest that the improved durability may be due to the presence of sodium silicate that enhanced the membrane strength. The SiO2-Na2SiO3-coated SSF also exhibited desirable corrosion resistance in salty and acidic environments; however, further optimization is needed for their use in basic media. The current study presents a novel approach to fabricate high-performance oil-water separation membranes.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Fabrication of superhydrophilic and underwater superoleophobic membranes for fast and effective oil/water separation with excellent durability
    Zhou, Dai-Lin
    Yang, Deng
    Han, Di
    Zhang, Qin
    Chen, Feng
    Fu, Qiang
    JOURNAL OF MEMBRANE SCIENCE, 2021, 620
  • [32] Fabrication of superhydrophilic and underwater superoleophobic CuxO/TiO2 mesh for oil-water separation
    Agano, Christian B.
    Villanueva, Abbie Gail C.
    Cristobal, Anna Patricia S.
    Madera, Rozen Grace B.
    Montallana, Arantxa Danielle S.
    Vasquez, Magdaleno R., Jr.
    RESULTS IN PHYSICS, 2021, 25
  • [33] 3D printed robust superhydrophilic and underwater superoleophobic composite membrane for high efficient oil/water separation
    Li, Xipeng
    Shan, Huiting
    Zhang, Wei
    Li, Baoan
    SEPARATION AND PURIFICATION TECHNOLOGY, 2020, 237 (237)
  • [34] Preparation and Application of Superhydrophilic-superoleophobic Inorganic Membrane Materials in Oil-water Separation
    Cai X.-Y.
    Li L.
    Wang J.-J.
    Li X.-K.
    Liu Y.
    Li G.-H.
    Rao P.-H.
    Surface Technology, 2023, 52 (12): : 289 - 297
  • [35] A robust copper mesh-based superhydrophilic/superoleophobic composite for high-flux oil-water separation
    Li, Ruhui
    Yu, Ruobing
    Fan, Junhan
    Chang, Bu
    JOURNAL OF MATERIALS SCIENCE, 2023, 58 (27) : 11044 - 11061
  • [36] Preparation of superhydrophilic and underwater superoleophobic nickel-coating material and oil-water separation performance
    Yu X.-T.
    Gou X.-D.
    Zhang Y.-Z.
    Zhang, Yan-Zong (zyz1000@163.com), 1600, Chongqing Wujiu Periodicals Press (50): : 177 - 183
  • [37] Hydrogel-coated basalt fibre with superhydrophilic and underwater superoleophobic performance for oil-water separation
    Cai, Deng-Liang
    Ma, Peng-Cheng
    COMPOSITES COMMUNICATIONS, 2019, 14 : 1 - 6
  • [38] Mussel primed grafted zwitterionic phosphorylcholine based superhydrophilic/underwater superoleophobic antifouling membranes for oil-water separation
    Kumar, A.
    Nayak, K.
    Muench, A. S.
    Uhlmann, P.
    Fery, A.
    Tripathi, B. P.
    SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 290
  • [39] Efficient separation of oil-in-water emulsion based on a superhydrophilic and underwater superoleophobic polyvinylidene fluoride membrane
    Qu, Mengnan
    Pang, Yajie
    Li, Jiehui
    Wang, Rong
    Luo, Zhanxia
    He, Dan
    Sun, Wenchao
    Peng, Lei
    He, Jinmei
    SURFACE AND INTERFACE ANALYSIS, 2021, 53 (11) : 910 - 918
  • [40] Sugarcane-based superhydrophilic and underwater superoleophobic membrane for efficient oil-in-water emulsions separation
    Liu, Yanhua
    Bai, Tianbin
    Zhao, Shixing
    Zhang, Zhuanli
    Feng, Meijun
    Zhang, Jianbin
    Li, Dianming
    Feng, Libang
    JOURNAL OF HAZARDOUS MATERIALS, 2024, 461