Safe Learning in Robotics: From Learning-Based Control to Safe Reinforcement Learning

被引:211
|
作者
Brunke, Lukas [1 ,2 ,3 ]
Greeff, Melissa [1 ,2 ,3 ]
Hall, Adam W. [1 ,2 ,3 ]
Yuan, Zhaocong [1 ,2 ,3 ]
Zhou, Siqi [1 ,2 ,3 ]
Panerati, Jacopo [1 ,2 ,3 ]
Schoellig, Angela P. [1 ,2 ,3 ]
机构
[1] Univ Toronto, Inst Aerosp Studies, Toronto, ON, Canada
[2] Univ Toronto, Robot Inst, Toronto, ON, Canada
[3] Vector Inst Artificial Intelligence, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
safe learning; robotics; robot learning; learning-based control; safe reinforcement learning; adaptive control; robust control; model predictive control; machine learning; benchmarks; MODEL-PREDICTIVE CONTROL; BARRIER FUNCTIONS; TRACKING CONTROL; OPTIMIZATION; EXPLORATION; ROBUSTNESS; ALGORITHMS; FRAMEWORK; SYSTEMS;
D O I
10.1146/annurev-control-042920-020211
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The last half decade has seen a steep rise in the number of contributions on safe learning methods for real-world robotic deployments from both the control and reinforcement learning communities. This article provides a concise but holistic review of the recent advances made in using machine learning to achieve safe decision-making under uncertainties, with a focus on unifying the language and frameworks used in control theory and reinforcement learning research. It includes learning-based control approaches that safely improve performance by learning the uncertain dynamics, reinforcement learning approaches that encourage safety or robustness, and methods that can formally certify the safety of a learned control policy. As data- and learning-based robot control methods continue to gain traction, researchers must understand when and how to best leverage them in real-world scenarios where safety is imperative, such as when operating in close proximity to humans. We highlight some of the open challenges that will drive the field of robot learning in the coming years, and emphasize the need for realistic physics-based benchmarks to facilitate fair comparisons between control and reinforcement learning approaches.
引用
下载
收藏
页码:411 / 444
页数:34
相关论文
共 50 条
  • [21] Safe Deep Reinforcement Learning-Based Constrained Optimal Control Scheme for HEV Energy Management
    Liu, Zemin Eitan
    Zhou, Quan
    Li, Yanfei
    Shuai, Shijin
    Xu, Hongming
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2023, 9 (03): : 4278 - 4293
  • [22] Safe deep reinforcement learning-based constrained optimal control scheme for active distribution networks
    Kou, Peng
    Liang, Deliang
    Wang, Chen
    Wu, Zihao
    Gao, Lin
    APPLIED ENERGY, 2020, 264 (264)
  • [23] Safe Hybrid-Action Reinforcement Learning-Based Decision and Control for Discretionary Lane Change
    Xu, Ruichen
    Xu, Jinming
    Liu, Xiao
    Lin, Yuan
    MACHINES, 2024, 12 (04)
  • [24] Learning-based model predictive control for safe path planning and control
    Ren, Hongbin
    Li, Yunong
    Wang, Yang
    Chen, Chih-Keng
    Yang, Lin
    Zhao, Yuzhuang
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2024,
  • [25] Verification and repair of control policies for safe reinforcement learning
    Shashank Pathak
    Luca Pulina
    Armando Tacchella
    Applied Intelligence, 2018, 48 : 886 - 908
  • [26] Safe HVAC Control via Batch Reinforcement Learning
    Liu, Hsin-Yu
    Balaji, Bharathan
    Gao, Sicun
    Gupta, Rajesh
    Hong, Dezhi
    2022 13TH ACM/IEEE INTERNATIONAL CONFERENCE ON CYBER-PHYSICAL SYSTEMS (ICCPS 2022), 2022, : 181 - 192
  • [27] Safe Reinforcement Learning Control for Water Distribution Network
    Val, Jorge
    Wisniewski, Rafal
    Kallesoe, Carsten Skovmose
    5TH IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS (IEEE CCTA 2021), 2021, : 1148 - 1153
  • [28] Verification and repair of control policies for safe reinforcement learning
    Pathak, Shashank
    Pulina, Luca
    Tacchella, Armando
    APPLIED INTELLIGENCE, 2018, 48 (04) : 886 - 908
  • [29] Reinforcement Learning for Robotic Safe Control with Force Sensing
    Lin, Nan
    Zhang, Linrui
    Chen, Yuxuan
    Zhu, Yujun
    Chen, Ruoxi
    Wu, Peichen
    Chen, Xiaoping
    2019 WORLD ROBOT CONFERENCE SYMPOSIUM ON ADVANCED ROBOTICS AND AUTOMATION (WRC SARA 2019), 2019, : 148 - 153
  • [30] Safe Reinforcement Learning-based Driving Policy Design for Autonomous Vehicles on Highways
    Nguyen, Hung Duy
    Han, Kyoungseok
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2023, 21 (12) : 4098 - 4110