Graphical aerosol classification method using aerosol relative optical depth

被引:36
|
作者
Chen, Qi-Xiang [1 ]
Yuan, Yuan [1 ]
Shuai, Yong [1 ]
Tan, He-Ping [1 ]
机构
[1] Harbin Inst Technol, Sch Energy Sci & Engn, 92 West Dazhi St, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Aerosol classification method; Aerosol relative optical thickness (AROT); Aerosol optical thickness (AOT); Pollutants; DUST; VARIABILITY; URBAN; ALGORITHM;
D O I
10.1016/j.atmosenv.2016.03.061
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A simple graphical method is presented to classify aerosol types based on a combination of aerosol optical thickness (AOT) and aerosol relative optical thickness (AROT). Six aerosol types, including maritime (MA), desert dust (DD), continental (CO), sub-continental (SC), urban industry (UI) and biomass burning (BB), are discriminated in a two dimensional space of AOT(440) and AROT(1020/440). Numerical calculations are performed using MIE theory based on a multi log-normal particle size distribution, and the AROT ranges for each aerosol type are determined. More than 5 years of daily observations from 8 representative aerosol sites are applied to the method to confirm spatial applicability. Finally, 3 individual cases are analyzed according to their specific aerosol status. The outcomes indicate that the new graphical method coordinates well with regional characteristics and is also able to distinguish aerosol variations in individual situations. This technique demonstrates a novel way to estimate different aerosol types and provide information on radiative forcing calculations and satellite data corrections. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:84 / 91
页数:8
相关论文
共 50 条
  • [21] Measurements of the spectral aerosol optical depth using a sun photometer
    Blumthaler, M
    Ambach, W
    Blasbichler, A
    [J]. THEORETICAL AND APPLIED CLIMATOLOGY, 1997, 57 (1-2) : 95 - 101
  • [22] Measurements of the spectral aerosol optical depth using a sun photometer
    M. Blumthaler
    W. Ambach
    A. Blasbichler
    [J]. Theoretical and Applied Climatology, 1997, 57 : 95 - 101
  • [23] Retrieval of Regional Aerosol Optical Depth Using Deep Learning
    Liang Tianchen
    Sun Lin
    Wang Yongji
    [J]. ACTA OPTICA SINICA, 2021, 41 (04)
  • [24] Validation and calibration of aerosol optical depth and classification of aerosol types based on multi-source data over China
    Wang, Jing
    Liu, Yusi
    Chen, Li
    Liu, Yaxin
    Mi, Ke
    Gao, Shuang
    Mao, Jian
    Zhang, Hui
    Sun, Yanling
    Ma, Zhenxing
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 903
  • [25] How aerosol size matters in aerosol optical depth (AOD) assimilation and the optimization using the Angstrom exponent
    Jin, Jianbing
    Henzing, Bas
    Segers, Arjo
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2023, 23 (02) : 1641 - 1660
  • [26] Estimation of aerosol optical depth at different wavelengths by multiple regression method
    Tan, Fuyi
    Lim, Hwee San
    Abdullah, Khiruddin
    Holben, Brent
    [J]. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2016, 23 (03) : 2735 - 2748
  • [27] Method for retrieval of aerosol optical depth from multichannel irradiance measurements
    Sztipanov, Milos
    Li, Wei
    Dahlback, Arne
    Stamnes, Jakob
    Svendby, Tove
    Stamnes, Knut
    [J]. OPTICS EXPRESS, 2023, 31 (24) : 40070 - 40085
  • [28] Aerosol optical depth measurements in eastern China and a new calibration method
    Lee, Kwon H.
    Li, Zhanqing
    Cribb, M. C.
    Liu, Jianjun
    Wang, Lei
    Zheng, Youfei
    Xia, Xiangao
    Chen, Hongbin
    Li, Bai
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2010, 115
  • [29] Estimation of aerosol optical depth at different wavelengths by multiple regression method
    Fuyi Tan
    Hwee San Lim
    Khiruddin Abdullah
    Brent Holben
    [J]. Environmental Science and Pollution Research, 2016, 23 : 2735 - 2748
  • [30] Using particle swarm optimization to improve visibility-aerosol optical depth retrieval method
    Wu, Jian
    Zhang, Shuang
    Yang, Qidong
    Zhao, Deming
    Fan, Wenxuan
    Zhao, Jingchuan
    Shen, Cheng
    [J]. NPJ CLIMATE AND ATMOSPHERIC SCIENCE, 2021, 4 (01)