Mean squared error comparisons of the modified ridge regression estimator and the restricted ridge regression estimator

被引:15
|
作者
Kaciranlar, S [1 ]
Sakallioglu, S [1 ]
Akdeniz, F [1 ]
机构
[1] Cukurova Univ, Dept Math, TR-01330 Adana, Turkey
关键词
ridge regression; restricted ridge regression; prior information; mean square error matrix;
D O I
10.1080/03610929808832655
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Swindel (1976) introduced a modified ridge regression estimator based on prior information. Sarkar (1992) suggested a new estimator by combining in a particular way the two approaches followed in obtaining the restricted least squares and ordinary ridge regression estimators. In this paper we compare the mean square error matrices of the modified ridge regression estimator based on prior information and the restricted ridge regression estimator introduced by Sarkar (1992). We stated a sufficient condition for the mean square error matrix of the modified ridge regression estimator to exceed the mean square error matrix of the restricted ridge regression estimator.
引用
收藏
页码:131 / 138
页数:8
相关论文
共 50 条
  • [21] Mean squared error of ridge estimators in logistic regression
    Blagus, Rok
    Goeman, Jelle J.
    [J]. STATISTICA NEERLANDICA, 2020, 74 (02) : 159 - 191
  • [22] BOUNDS ON MINIMUM MEAN SQUARED ERROR IN RIDGE REGRESSION
    BALDWIN, KF
    HOERL, AE
    [J]. COMMUNICATIONS IN STATISTICS PART A-THEORY AND METHODS, 1978, 7 (13): : 1209 - 1218
  • [23] Linearized Ridge Regression Estimator in Linear Regression
    Liu, Xu-Qing
    Gao, Feng
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2011, 40 (12) : 2182 - 2192
  • [24] THE RESTRICTED LEAST-SQUARES ESTIMATOR AND RIDGE-REGRESSION
    FAREBROTHER, RW
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1984, 13 (02) : 191 - 196
  • [25] Inequality constrained ridge regression estimator
    Toker, Selma
    Siray, Gulesne Ustundag
    Kaciranlar, Selahattin
    [J]. STATISTICS & PROBABILITY LETTERS, 2013, 83 (10) : 2391 - 2398
  • [26] Jackknifing the Ridge Regression Estimator: A Revisit
    Khurana, Mansi
    Chaubey, Yogendra P.
    Chandra, Shalini
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (24) : 5249 - 5262
  • [27] An iterative approach to minimize the mean squared error in ridge regression
    Ka Yiu Wong
    Sung Nok Chiu
    [J]. Computational Statistics, 2015, 30 : 625 - 639
  • [28] An iterative approach to minimize the mean squared error in ridge regression
    Wong, Ka Yiu
    Chiu, Sung Nok
    [J]. COMPUTATIONAL STATISTICS, 2015, 30 (02) : 625 - 639
  • [29] New Ridge Regression Estimator in Semiparametric Regression Models
    Roozbeh, Mahdi
    Arashi, Mohammad
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2016, 45 (10) : 3683 - 3715
  • [30] Modified two parameter ridge estimator for beta regression model
    Junaid, Ayesha
    Khan, Aamna
    Alrumayh, Amani
    Alghamdi, Fatimah M.
    Hussam, Eslam
    Aljohani, Hassan M.
    Alrashidi, Afaf
    [J]. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES, 2024, 17 (02)