New Recursive Approximations for Variable-Order Fractional Operators with Applications

被引:22
|
作者
Zaky, Mahmoud A. [1 ]
Doha, Eid H. [2 ]
Taha, Taha M. [3 ]
Baleanu, Dumitru [4 ,5 ]
机构
[1] Natl Res Ctr, Dept Appl Math, Giza 12622, Egypt
[2] Cairo Univ, Fac Sci, Dept Math, Giza, Egypt
[3] Beni Suef Univ, Fac Sci, Dept Math, Bani Suwayf, Egypt
[4] Cankaya Univ, Dept Math, Ankara, Turkey
[5] Inst Space Sci, Magurele, Romania
关键词
spectral collocation methods; modified generalized Laguerre polynomials; variable order fractional integrals and derivatives; Bagley-Torvik equation; DERIVATIVES; VISCOELASTICITY; EQUATION;
D O I
10.3846/mma.2018.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
To broaden the range of applicability of variable-order fractional differential models, reliable numerical approaches are needed to solve the model equation. In this paper, we develop Laguerre spectral collocation methods for solving variable-order fractional initial value problems on the half line. Specifically, we derive three-term recurrence relations to efficiently calculate the variable-order fractional integrals and derivatives of the modified generalized Laguerre polynomials, which lead to the corresponding fractional differentiation matrices that will be used to construct the collocation methods. Comparison with other existing methods shows the superior accuracy of the proposed spectral collocation methods.
引用
收藏
页码:227 / 239
页数:13
相关论文
共 50 条
  • [31] Second-order approximations for variable order fractional derivatives: Algorithms and applications
    Zhao, Xuan
    Sun, Zhi-zhong
    Karniadakis, George Em
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 293 : 184 - 200
  • [32] Approximation of integral operators by variable-order interpolation
    Börm, S
    Löhndorf, M
    Melenk, JM
    NUMERISCHE MATHEMATIK, 2005, 99 (04) : 605 - 643
  • [33] Numerical simulations for fractional variable-order equations
    Mozyrska, Dorota
    Oziablo, Piotr
    IFAC PAPERSONLINE, 2018, 51 (04): : 853 - 858
  • [34] New variable-order fractional chaotic systems for fast image encryption
    Wu, Guo-Cheng
    Deng, Zhen-Guo
    Baleanu, Dumitru
    Zeng, De-Qiang
    CHAOS, 2019, 29 (08)
  • [35] Variable-order fuzzy fractional PID controller
    Liu, Lu
    Pan, Feng
    Xue, Dingyu
    ISA TRANSACTIONS, 2015, 55 : 227 - 233
  • [36] Legendre wavelet method for solving variable-order nonlinear fractional optimal control problems with variable-order fractional Bolza cost
    Kumar, Nitin
    Mehra, Mani
    ASIAN JOURNAL OF CONTROL, 2023, 25 (03) : 2122 - 2138
  • [37] A new Wavelet Method for Variable-Order Fractional Optimal Control Problems
    Heydari, Mohammad Hossein
    Avazzadeh, Zakieh
    ASIAN JOURNAL OF CONTROL, 2018, 20 (05) : 1804 - 1817
  • [38] Variable-order fractional calculus: A change of perspective
    Garrappa, Roberto
    Giusti, Andrea
    Mainardi, Francesco
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 102
  • [39] Uniqueness of determining the variable fractional order in variable-order time-fractional diffusion equations
    Zheng, Xiangcheng
    Cheng, Jin
    Wang, Hong
    INVERSE PROBLEMS, 2019, 35 (12)
  • [40] On the Variable-order Fractional Laplacian Equation with Variable Growth on RN
    Nguyen Van Thin
    TAIWANESE JOURNAL OF MATHEMATICS, 2021, 25 (06): : 1187 - 1223