Structure of the active n-terminal domain of ezrin - Conformational and mobility changes identify keystone interactions

被引:93
|
作者
Smith, WJ
Nassar, N
Bretscher, A [1 ]
Cerione, RA
Karplus, PA
机构
[1] Cornell Univ, Dept Mol Biol & Genet, Ithaca, NY 14853 USA
[2] Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14853 USA
[3] Cornell Univ, Dept Mol Med, Ithaca, NY 14853 USA
[4] Oregon State Univ, Dept Biochem & Biophys, Corvallis, OR 97331 USA
关键词
D O I
10.1074/jbc.M210601200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Ezrin is a member of the ERM (ezrin, radixin, moesin) family of proteins that cross-link the actin cytoskeleton to the plasma membrane and also may function in signaling cascades that regulate the assembly of actin stress fibers. Here, we report a crystal structure for the free (activated) FERM domain (residues 2-297) of recombinant human ezrin at 2.3 Angstrom resolution. Structural comparison among the dormant moesin FERM domain structure and the three known active FERM domain structures (radixin, moesin, and now ezrin) allows the clear definition of regions that undergo structural changes during activation. The key regions affected are residues 135-150 and 155-180 in lobe F2 and residues 210-214 and 235-267 in lobe F3. Furthermore, we show that a large increase in the mobilities of lobes F2 and F3 accompanies activation, suggesting that their integrity is compromised. This leads us to propose a new concept that we refer to as keystone interactions. Keystone interactions occur when one protein (or protein part) contributes residues that allow another protein to complete folding, meaning that it becomes an integral part of the structure and would rarely dissociate. Such interactions are well suited for long-lived cytoskeletal protein interactions. The keystone interactions concept leads us to predict two specific docking sites within lobes F2 and F3 that are likely to bind target proteins.
引用
下载
收藏
页码:4949 / 4956
页数:8
相关论文
共 50 条
  • [21] Untangling the structure of the TDP-43 N-terminal domain
    Chang, Chung-ke
    Huang, Tai-huang
    FEBS JOURNAL, 2016, 283 (07) : 1239 - 1241
  • [22] Characterization and Structure Determination of the Perilipin 5 N-Terminal Domain
    Manning, Erick C. Juarez
    Wei, Derek T.
    Tansey, John T.
    FASEB JOURNAL, 2019, 33
  • [23] Solution structure of the COMMD1 N-terminal domain
    Sommerhalter, Monika
    Zhang, Yongbo
    Rosenzweig, Amy C.
    JOURNAL OF MOLECULAR BIOLOGY, 2007, 365 (03) : 715 - 721
  • [24] Structure of the N-terminal dimerization domain of CEACAM7
    Bonsor, Daniel A.
    Beckett, Dorothy
    Sundberg, Eric J.
    ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS, 2015, 71 : 1169 - 1175
  • [25] Topology and secondary structure of the N-terminal domain of diacylglycerol kinase
    Oxenoid, K
    Sönnichsen, FD
    Sanders, CR
    BIOCHEMISTRY, 2002, 41 (42) : 12876 - 12882
  • [26] Characterization of TonB interactions with the FepA cork domain and FecA N-terminal signaling domain
    Peacock, R. Sean
    Andrushchenko, Valery V.
    Demcoe, A. Ross
    Gehmlich, Matt
    Lu, Lily Sia
    Garcia Herrero, Alicia
    Vogel, Hans J.
    BIOMETALS, 2006, 19 (02) : 127 - 142
  • [27] Characterization of TonB Interactions with the FepA Cork Domain and FecA N-terminal Signaling Domain
    R. Sean Peacock
    Valery V. Andrushchenko
    A. Ross Demcoe
    Matt Gehmlich
    Lily Sia Lu
    Alicia Garcia Herrero
    Hans J. Vogel
    Biometals, 2006, 19 : 127 - 142
  • [28] Crystal structure of the N-terminal domain of MinC dimerized via domain swapping
    An, Jun Yop
    Kim, Tae Gyun
    Park, Kyoung Ryoung
    Lee, Jung-Gyu
    Youn, Hyung-Seop
    Lee, Youngjin
    Kang, Jung Youn
    Kang, Gil Bu
    Eom, Soo Hyun
    JOURNAL OF SYNCHROTRON RADIATION, 2013, 20 : 984 - 988
  • [29] Structure and RNA interactions of the N-terminal RRM domains of PTB
    Simpson, PJ
    Monie, TP
    Szendröi, A
    Davydova, N
    Tyzack, JK
    Conte, MR
    Read, CM
    Cary, PD
    Svergun, DI
    Konarev, PV
    Curry, S
    Matthews, S
    STRUCTURE, 2004, 12 (09) : 1631 - 1643
  • [30] N-TERMINAL DOMAIN OF AVENA PHYTOCHROME - INTERACTIONS WITH SODIUM DODECYL-SULFATE MICELLES AND N-TERMINAL CHAIN TRUNCATED PHYTOCHROME
    PARKER, W
    PARTIS, M
    SONG, PS
    BIOCHEMISTRY, 1992, 31 (39) : 9413 - 9420