Fault diagnosis of rotating machinery using an intelligent order tracking system

被引:53
|
作者
Bai, MS [1 ]
Huang, JM [1 ]
Hong, MH [1 ]
Su, FC [1 ]
机构
[1] Natl Chiao Tung Univ, Dept Mech Engn, Hsinchu 300, Taiwan
关键词
13;
D O I
10.1016/j.jsv.2003.12.036
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This research focuses on the development of an intelligent diagnostic system for rotating machinery. The system is composed of a signal processing module and a state inference module. In the signal processing module, the recursive least square (RLS) algorithm and the Kalman filter are exploited to extract the order amplitudes of vibration signals, followed by fault classification using the fuzzy state inference module. The RLS algorithm and Kalman filter provide advantages in order tracking over conventional Fourier-based techniques in that they are insensitive to smearing problems arising from closely spaced orders or crossing orders. On the basis of thus obtained order features, the potential fault types are then deduced with the aid of a state inference engine. Human diagnostic rules are fuzzified for various common faults, including the single fault and double fault situations. This system is implemented on the platform of a floating point digital signal processor, where a photo switch and an accelerometer supply the shaft speed and acceleration signals, respectively. Experiments were carried out for a rotor kit and a practical four-cylinder engine to show the effectiveness of the proposed system in tracking the rotating order with precise inference. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:699 / 718
页数:20
相关论文
共 50 条
  • [41] Intelligent Fault Diagnostic Model for Rotating Machinery
    Muhammad, Masdi B.
    Sarwar, Umair
    Tahan, Mohammadreza
    Karim, Z. A. Abdul
    2017 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT (IEEM), 2017, : 1858 - 1862
  • [42] Fault diagnosis of rotating machinery under time-varying speed based on order tracking and deep learning
    Wang, Taiyong
    Zhang, Lan
    Qiao, Huihui
    Wang, Peng
    JOURNAL OF VIBROENGINEERING, 2020, 22 (02) : 366 - 382
  • [43] Twin Broad Learning System for Fault Diagnosis of Rotating Machinery
    Yang, Le
    Yang, Zelin
    Song, Shiji
    Li, Fan
    Chen, C. L. Philip
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [45] Artificial Immune System Used in Rotating Machinery Fault Diagnosis
    Zhao, Linhui
    Zhou, Lihua
    Dai, Yaping
    Dai, Zhongjian
    PROCEEDINGS OF THE 2015 CHINESE INTELLIGENT AUTOMATION CONFERENCE: INTELLIGENT AUTOMATION, 2015, 337 : 65 - 74
  • [46] Fault detection and diagnosis of rotating machinery
    Loparo, KA
    Adams, ML
    Lin, W
    Abdel-Magied, MF
    Afshari, N
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2000, 47 (05) : 1005 - 1014
  • [47] Fault detection and diagnosis in rotating machinery
    Loparo, KA
    Afshari, N
    Abdel-Magied, M
    1998 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-5, 1998, : 2986 - 2991
  • [48] The Study of Fault Diagnosis in Rotating Machinery
    Othman, Nor Azlan
    Damanhuri, Nor Salwa
    Kadirkamanathan, Visakan
    CSPA: 2009 5TH INTERNATIONAL COLLOQUIUM ON SIGNAL PROCESSING AND ITS APPLICATIONS, PROCEEDINGS, 2009, : 69 - 74
  • [49] An intelligent fault diagnosis method of rotating machinery using L1-regularized sparse filtering
    Qian, Weiwei
    Li, Shunming
    Wang, Jinrui
    An, Zenghui
    Jiang, Xingxing
    JOURNAL OF VIBROENGINEERING, 2018, 20 (08) : 2839 - 2854
  • [50] Intelligent fault diagnosis of rotating machinery using a new ensemble deep auto-encoder method
    Zhang, Yuyan
    Li, Xinyu
    Gao, Liang
    Chen, Wen
    Li, Peigen
    MEASUREMENT, 2020, 151