Invariance properties and conservation laws of perturbed fractional wave equation

被引:3
|
作者
Lashkarian, Elham [1 ]
Motamednezhad, Ahmad [1 ]
Hejazi, S. Reza [1 ]
机构
[1] Shahrood Univ Technol, Fac Math Sci, Semnan, Iran
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2021年 / 136卷 / 06期
关键词
LIE SYMMETRY ANALYSIS; NONLINEAR SCHRODINGER-EQUATION; NUMERICAL APPROXIMATIONS; BURGERS; ORDER; PDES;
D O I
10.1140/epjp/s13360-021-01595-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this research, the group formalism, invariance properties and conservation laws of the nonlinear perturbed fractional wave equation have been explored. The method used in this paper was first described by Lukashchuk (Commun Nonlinear Sci Numer Simul 68:147-159, 2019). He shows that when the order of fractional derivative in a fractional differential equation is nearly integers, it can be approximated to a perturbed integer-order differential equation with a small perturbation parameter. Perturbed and unperturbed symmetries are found, and some new solutions are computed by the symmetry operators of the equation. These solutions are obtained by the invariant transformations of the symmetries. Also one-dimensional optimal system is used to derive another exact solutions. Finally, the nonlinear self-adjointness concept is applied in order to find conservation laws with informal Lagrangians.
引用
收藏
页数:22
相关论文
共 50 条