Final states of incompressible two dimensional decaying vorticity fields

被引:0
|
作者
Segre, E
Kida, S
机构
来源
关键词
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
引用
收藏
页码:137 / 140
页数:4
相关论文
共 50 条
  • [31] Search for heavy resonances decaying to two Higgs bosons in final states containing four b quarks
    Khachatryan, V.
    Sirunyan, A. M.
    Tumasyan, A.
    Adam, W.
    Asilar, E.
    Bergauer, T.
    Brandstetter, J.
    Brondolin, E.
    Dragicevic, M.
    Eroe, J.
    Flechl, M.
    Friedl, M.
    Fruehwirth, R.
    Ghete, V. M.
    Hartl, C.
    Hoermann, N.
    Hrubec, J.
    Jeitler, M.
    Koenig, A.
    Krammer, M.
    Kraetschmer, I.
    Liko, D.
    Matsushita, T.
    Mikulec, I.
    Rabady, D.
    Rad, N.
    Rahbaran, B.
    Rohringer, H.
    Schieck, J.
    Schoefbeck, R.
    Strauss, J.
    Treberer-Treberspurg, W.
    Waltenberger, W.
    Wulz, C. -E.
    Mossolov, V.
    Shumeiko, N.
    Gonzalez, J. Suarez
    Alderweireldt, S.
    Cornelis, T.
    De Wolf, E. A.
    Janssen, X.
    Knutsson, A.
    Lauwers, J.
    Luyckx, S.
    Van de Klundert, M.
    Van Haevermaet, H.
    Van Mechelen, P.
    Van Remortel, N.
    Van Spilbeeck, A.
    Abu Zeid, S.
    EUROPEAN PHYSICAL JOURNAL C, 2016, 76 (07):
  • [32] Incompressible, metallic and insulating states of two-dimensional systems: Recent experiments
    Shayegan, M
    SOLID STATE COMMUNICATIONS, 1997, 102 (2-3) : 155 - 163
  • [33] Bistability and hysteresis of maximum-entropy states in decaying two-dimensional turbulence
    Loxley, P. N.
    Nadiga, B. T.
    PHYSICS OF FLUIDS, 2013, 25 (01)
  • [34] Self-organization phenomena and decaying self-similar state in two-dimensional incompressible viscous fluids
    Kondoh, Y
    Serizawa, S
    Nakano, A
    Takahashi, T
    Van Dam, JW
    PHYSICAL REVIEW E, 2004, 70 (06):
  • [35] SHORT WAVELENGTH INSTABILITIES OF INCOMPRESSIBLE 3-DIMENSIONAL FLOWS AND GENERATION OF VORTICITY
    LIFSCHITZ, A
    PHYSICS LETTERS A, 1991, 157 (8-9) : 481 - 487
  • [36] Existence of Solutions for Three Dimensional Stationary Incompressible Euler Equations with Nonvanishing Vorticity
    Chunlei TANG Zhouping XIN Department of Mathematics
    The Institute of Mathematical Sciences
    Chinese Annals of Mathematics,Series B, 2009, (06) : 803 - 830
  • [37] PARTICLE MOTION IN VORTICITY-CONSERVING, 2-DIMENSIONAL INCOMPRESSIBLE FLOWS
    BROWN, MG
    SAMELSON, RM
    PHYSICS OF FLUIDS, 1994, 6 (09) : 2875 - 2876
  • [38] Existence of solutions for three dimensional stationary incompressible Euler equations with nonvanishing vorticity
    Chunlei Tang
    Zhouping Xin
    Chinese Annals of Mathematics, Series B, 2009, 30 : 803 - 830
  • [39] Existence of Solutions for Three Dimensional Stationary Incompressible Euler Equations with Nonvanishing Vorticity
    Chunlei TANG Zhouping XIN Department of MathematicsSouthwest UniversityChongqing China
    The Institute of Mathematical SciencesThe Chinese University of Hong KongHong KongChina The Institute of Mathematical SciencesThe Chinese University of Hong KongHong KongChina
    ChineseAnnalsofMathematics, 2009, 30 (06) : 803 - 830
  • [40] EXISTENCE OF 3-DIMENSIONAL, STEADY, INVISCID, INCOMPRESSIBLE FLOWS WITH NONVANISHING VORTICITY
    ALBER, HD
    MATHEMATISCHE ANNALEN, 1992, 292 (03) : 493 - 528