Harnessing no-photon exciton generation chemistry to engineer semiconductor nanostructures

被引:12
|
作者
Beke, David [1 ]
Karolyhazy, Gyula [1 ,2 ]
Czigany, Zsolt [3 ]
Bortel, Gabor [1 ]
Kamaras, Katalin [1 ]
Gali, Adam [1 ,4 ]
机构
[1] Hungarian Acad Sci, Inst Solid State Phys & Opt, Wigner Res Ctr Phys, POB 49, H-1525 Budapest, Hungary
[2] Budapest Univ Technol & Econ, Fac Chem Technol & Biotechnol, Muegyet Rkp 7-9, H-1111 Budapest, Hungary
[3] Hungarian Acad Sci, Inst Tech Phys & Mat Sci, Ctr Energy Res, Konkoly Thege M Ut 29-33, H-1121 Budapest, Hungary
[4] Budapest Univ Technol & Econ, Dept Atom Phys, Budafoki Ut 8, H-1111 Budapest, Hungary
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
关键词
CARBIDE QUANTUM DOTS; REDOX REACTIONS; SILICON; LUMINESCENCE; IDENTIFICATION; OXIDATION; RADICALS; OXYGEN;
D O I
10.1038/s41598-017-10751-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Production of semiconductor nanostructures with high yield and tight control of shape and size distribution is an immediate quest in diverse areas of science and technology. Electroless wet chemical etching or stain etching can produce semiconductor nanoparticles with high yield but is limited to a few materials because of the lack of understanding the physical-chemical processes behind. Here we report a no-photon exciton generation chemistry (NPEGEC) process, playing a key role in stain etching of semiconductors. We demonstrate NPEGEC on silicon carbide polymorphs as model materials. Specifically, size control of cubic silicon carbide nanoparticles of diameter below ten nanometers was achieved by engineering hexagonal inclusions in microcrystalline cubic silicon carbide. Our finding provides a recipe to engineer patterned semiconductor nanostructures for a broad class of materials.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Colloidal Nanocrystals: A Promising Semiconductor Platform for Photon/Exciton Manipulation
    Lin, Xing
    Ye, Zikang
    Cao, Zhiyuan
    Qin, Haiyan
    Peng, Xiaogang
    ACCOUNTS OF MATERIALS RESEARCH, 2024, 5 (08): : 884 - 895
  • [42] CONTROLLED EXCITON-PHOTON INTERACTION IN SEMICONDUCTOR BULK MICROCAVITIES
    TREDICUCCI, A
    CHEN, Y
    PELLEGRINI, V
    BORGER, M
    SORBA, L
    BELTRAM, F
    BASSANI, F
    PHYSICAL REVIEW LETTERS, 1995, 75 (21) : 3906 - 3909
  • [43] Strong exciton-photon coupling in an organic semiconductor microcavity
    Lidzey, DG
    Bradley, DDC
    Skolnick, MS
    Virgili, T
    Walker, S
    Whittaker, DM
    NATURE, 1998, 395 (6697) : 53 - 55
  • [44] ON CHARGE CARRIER GENERATION BY EXCITON-EXCITON AND EXCITON-PHOTON INTERACTIONS IN CRYSTALLINE ANTHRACENE
    DELACOTE, G
    SCHOTT, M
    MOLECULAR CRYSTALS, 1968, 3 (03): : 385 - &
  • [45] PHYS 559-Exciton transfer in organic-semiconductor nanostructures
    Kilin, Dmitri S.
    Tsemekhman, Kin
    Zenkevich, Eduard I.
    Kilina, Svetlana V.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 232
  • [46] Exciton dynamics in diluted magnetic II-VI semiconductor nanostructures
    Oka, Y
    Yanata, K
    Takano, S
    Egawa, K
    Matsui, K
    Takahashi, M
    Okamoto, H
    JOURNAL OF CRYSTAL GROWTH, 1998, 184 : 926 - 930
  • [47] EXCITON-PLASMON INTERACTION IN MONOLAYERS OF METAL-SEMICONDUCTOR NANOSTRUCTURES
    Haridas, M.
    Tripathi, L. N.
    Basu, J. K.
    INTERNATIONAL JOURNAL OF NANOSCIENCE, 2011, 10 (4-5) : 623 - 627
  • [48] Spin entanglement generation and detection in semiconductor nanostructures
    Belzig, Wolfgang
    Bednorz, Adam
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2014, 251 (09): : 1945 - 1954
  • [49] Recent advance in multiple exciton generation in semiconductor nanocrystals
    Liu Chang-Ju
    Lu Min
    Su Wei-An
    Dong Tai-Yuan
    Shen Wen-Zhong
    ACTA PHYSICA SINICA, 2018, 67 (02)
  • [50] Exciton-photon dynamics in weakly and strongly excited semiconductor microcavities
    Bongiovanni, G
    Mura, A
    Quochi, F
    Staehli, JL
    Stanley, RP
    Oesterle, U
    Houdre, R
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1998, 206 (01): : 375 - 386