Imalytics Preclinical: Interactive Analysis of Biomedical Volume Data

被引:91
|
作者
Gremse, Felix [1 ,2 ]
Staerk, Marius [1 ,2 ]
Ehling, Josef [1 ,2 ]
Menzel, Jan Robert [3 ]
Lammers, Twan [1 ,2 ]
Kiessling, Fabian [1 ,2 ]
机构
[1] Rhein Westfal TH Aachen, Univ Clin, Expt Mol Imaging, D-52074 Aachen, Germany
[2] Rhein Westfal TH Aachen, Helmholtz Inst Biomed Engn, Aachen, Germany
[3] Rhein Westfal TH Aachen, Comp Graph & Multimedia, Aachen, Germany
来源
THERANOSTICS | 2016年 / 6卷 / 03期
基金
欧洲研究理事会;
关键词
Interactive Segmentation; Medical Image Analysis; Multimodal Imaging; GPU Processing; Segmentation Rendering; Undo/Redo; QUANTIFICATION; CT; SEGMENTATION; IMPROVES; IMAGES; USPIO;
D O I
10.7150/thno.13624
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
A software tool is presented for interactive segmentation of volumetric medical data sets. To allow interactive processing of large data sets, segmentation operations, and rendering are GPU-accelerated. Special adjustments are provided to overcome GPU-imposed constraints such as limited memory and host-device bandwidth. A general and efficient undo/redo mechanism is implemented using GPU-accelerated compression of the multiclass segmentation state. A broadly applicable set of interactive segmentation operations is provided which can be combined to solve the quantification task of many types of imaging studies. A fully GPU-accelerated ray casting method for multiclass segmentation rendering is implemented which is well-balanced with respect to delay, frame rate, worst-case memory consumption, scalability, and image quality. Performance of segmentation operations and rendering are measured using high-resolution example data sets showing that GPU-acceleration greatly improves the performance. Compared to a reference marching cubes implementation, the rendering was found to be superior with respect to rendering delay and worst-case memory consumption while providing sufficiently high frame rates for interactive visualization and comparable image quality. The fast interactive segmentation operations and the accurate rendering make our tool particularly suitable for efficient analysis of multimodal image data sets which arise in large amounts in preclinical imaging studies.
引用
收藏
页码:328 / 341
页数:14
相关论文
共 50 条
  • [31] INTERACTIVE DATA-ANALYSIS
    LUDWIG, HR
    NOE, JM
    CHASE, RA
    COMPUTERS & INDUSTRIAL ENGINEERING, 1976, 1 (01) : 47 - 56
  • [32] Interactive exploratory data analysis
    Malinchik, S
    Orme, B
    Rothermich, JA
    Bonabeau, E
    CEC2004: PROCEEDINGS OF THE 2004 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2004, : 1098 - 1104
  • [33] Fast volume render techniques for interactive analysis
    H. J. Noordmans
    A. W. M. Smeulders
    H. T. M. van der Voort
    The Visual Computer, 1997, 13 : 345 - 358
  • [34] Fast volume render techniques for interactive analysis
    Univ of Amsterdam, Amsterdam, Netherlands
    Visual Comput, 8 (345-358):
  • [35] Fast and Accurate PET Preclinical Data Analysis: Segmentation and Partial Volume Effect Correction with no Anatomical priors
    Maroy, Renaud
    Viel, Thomas
    Boisgard, Raphael
    Comtat, Claude
    Trebossen, Regine
    Tavitian, Bertrand
    2008 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (2008 NSS/MIC), VOLS 1-9, 2009, : 4771 - 4774
  • [36] Fractalis: a scalable open-source service for platform-independent interactive visual analysis of biomedical data
    Herzinger, Sascha
    Groues, Valentin
    Gu, Wei
    Satagopam, Venkata
    Banda, Peter
    Trefois, Christophe
    Schneider, Reinhard
    GIGASCIENCE, 2018, 7 (09):
  • [37] Interactive data analysis and clustering of genomic data
    Ciaramella, A.
    Cocozza, S.
    Iorio, F.
    Miele, G.
    Napolitano, F.
    Pinelli, M.
    Raiconi, G.
    Tagliaferri, R.
    NEURAL NETWORKS, 2008, 21 (2-3) : 368 - 378
  • [38] Interactive data analysis on numeric-data
    Chu, Hong Ki
    Wong, Man Hong
    Proceedings of the International Database Engineering and Applications Symposium, IDEAS, 1999, : 226 - 230
  • [39] A Holistic Approach to Testing Biomedical Hypotheses and Analysis of Biomedical Data
    Psiuk-Maksymowicz, Krzysztof
    Placzek, Aleksander
    Jaksik, Roman
    Student, Sebastian
    Borys, Damian
    Mrozek, Dariusz
    Fujarewicz, Krzysztof
    Swierniak, Andrzej
    BEYOND DATABASES, ARCHITECTURES AND STRUCTURES, BDAS 2016, 2016, 613 : 449 - 462
  • [40] IsoExplorer: an isosurface-driven framework for 3D shape analysis of biomedical volume data
    Dai, Haoran
    Tao, Yubo
    He, Xiangyang
    Lin, Hai
    JOURNAL OF VISUALIZATION, 2021, 24 (06) : 1253 - 1266