Principles of ChIP-seq Data Analysis Illustrated with Examples

被引:0
|
作者
Ambrosini, Giovanna [1 ]
Dreos, Rene [1 ]
Bucher, Philipp [1 ]
机构
[1] Swiss Fed Inst Technol Lausanne EPFL, Swiss Inst Expt Canc Res ISREC, CH-1015 Lausanne, Switzerland
关键词
ChIP-seq; DNase I hypersensitive sites; transcription factor binding sites; histone marks; bioinformatics analysis; PROTEIN-DNA INTERACTIONS; PROFILES;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing (ChIP-seq) is a powerful method to determine how transcription factors and other chromatin-associated proteins interact with DNA in order to regulate gene transcription. A single ChIP-seq experiment produces large amounts of highly reproducible data. The challenge is to extract knowledge from the data by thoughtful application of appropriate bioinformatics tools. Here we present a concise introduction into ChIP-seq data analysis in the form of a tutorial based on tools developed by our group. We expose biological questions, explain methods and provide guidelines for the interpretation of the results. While this article focuses on ChIP-seq, most of the algorithms and tools we present are applicable to other chromatin profiling assays based on next generation sequencing (NGS) technology as well.
引用
收藏
页码:682 / 694
页数:13
相关论文
共 50 条
  • [31] An automated analysis pipeline for a large set of ChIP-seq data: AutoChIP
    Kim, Taemook
    Lee, Wooseok
    Han, Kyudong
    Kang, Keunsoo
    [J]. GENES & GENOMICS, 2015, 37 (03) : 305 - 311
  • [32] A short survey of computational analysis methods in analysing ChIP-seq data
    Kim H.
    Kim J.
    Selby H.
    Gao D.
    Tong T.
    Phang T.L.
    Tan A.C.
    [J]. Human Genomics, 5 (2) : 117 - 123
  • [33] No more mixed signals: Improved ChIP-seq data analysis with greenscreen
    Artur, Mariana A. S.
    [J]. PLANT CELL, 2022, 34 (12): : 4673 - 4674
  • [34] Analysis of Gene Regulatory Networks Inferred from ChIP-seq Data
    Stamoulakatou, Eirini
    Piccardi, Carlo
    Masseroli, Marco
    [J]. BIOINFORMATICS AND BIOMEDICAL ENGINEERING, IWBBIO 2019, PT I, 2019, 11465 : 319 - 331
  • [35] Saturation analysis of ChIP-seq data for reproducible identification of binding peaks
    Hansen, Peter
    Hecht, Jochen
    Ibrahim, Daniel M.
    Krannich, Alexander
    Truss, Matthias
    Robinson, Peter N.
    [J]. GENOME RESEARCH, 2015, 25 (09) : 1391 - 1400
  • [36] Large-Scale Quality Analysis of Published ChIP-seq Data
    Marinov, Georgi K.
    Kundaje, Anshul
    Park, Peter J.
    Wold, Barbara J.
    [J]. G3-GENES GENOMES GENETICS, 2014, 4 (02): : 209 - 223
  • [37] A fully Bayesian hidden Ising model for ChIP-seq data analysis
    Mo, Qianxing
    [J]. BIOSTATISTICS, 2012, 13 (01) : 113 - 128
  • [38] An automated analysis pipeline for a large set of ChIP-seq data: AutoChIP
    Taemook Kim
    Wooseok Lee
    Kyudong Han
    Keunsoo Kang
    [J]. Genes & Genomics, 2015, 37 : 305 - 311
  • [39] RACS: rapid analysis of ChIP-Seq data for contig based genomes
    Saettone, Alejandro
    Ponce, Marcelo
    Nabeel-Shah, Syed
    Fillingham, Jeffrey
    [J]. BMC BIOINFORMATICS, 2019, 20 (01)
  • [40] A decade of ChIP-seq
    Marinov, Georgi K.
    [J]. BRIEFINGS IN FUNCTIONAL GENOMICS, 2018, 17 (02) : 77 - 79