Molecular dynamic studies on the impact of mutations on the structure, stability, and N-terminal orientation of annexin A1: Implications for membrane aggregation

被引:5
|
作者
Simpkins, Bradley [1 ]
Donohue, Matthew P. [1 ]
Li, Yumin [1 ]
机构
[1] E Carolina Univ, Dept Chem, Greenville, NC 27858 USA
关键词
annexin A1; molecular dynamics; membrane aggregation; calcium binding; inter-domain interactions; PARTICLE-MESH EWALD; FREE-ENERGIES; MECHANICS; PROTEINS; BINDING;
D O I
10.1002/prot.24684
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Multiple MD simulations were performed for the full-length wild-type A1, the full length A1 mutations S27E and S27A, as well as the N-terminal peptide (AMVSEFLKQAWFIDNEEQEYIKTVKGS(27)KGGPGSAVSPYPTFN) of wild-type A1 and mutations S27E and S27A. The MD simulation trajectories of about 350 ns were generated and analyzed to examine the changes of core domain calcium binding affinity, core domain and N-terminal domain structures, and N-terminal domain orientation. Our results indicated that S27A and S27E mutations caused little changes on the calcium-binding affinity of the core domain of A1. However, the S27A mutation made the N-terminal domain of A1 less helical, and made the N-terminal domain migrate faster toward the core domain; these impacts on A1 are beneficial to the membrane aggregation process. On the contrary, the S27E mutation made the N-terminal domain of A1 more stable, and hindered the migration to the core domain; these changes on A1 are antagonistic for the membrane aggregation process. Our results using MD simulations provide an atomistic explanation for experimental observations that the S27E mutant showed a higher calcium concentration requirement and lower maximal extent of aggregation, while the wild-type and two mutants S27E and S27A required identical calcium concentrations for liposome binding. Proteins 2014; 82:3327-3334. (c) 2014 Wiley Periodicals, Inc.
引用
收藏
页码:3327 / 3334
页数:8
相关论文
共 50 条
  • [21] Molecular Basis of the Potent Membrane-remodeling Activity of the Epsin 1 N-terminal Homology Domain
    Yoon, Youngdae
    Tong, Jiansong
    Lee, Park Joo
    Albanese, Alexandra
    Bhardwaj, Nitin
    Kaellberg, Morten
    Digman, Michelle A.
    Lu, Hui
    Gratton, Enrico
    Shin, Yeon-Kyun
    Cho, Wonhwa
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (01) : 531 - 540
  • [22] Structure-function studies of DNA binding by the N-terminal domain of yPms1.
    Arana, M. E.
    Holmes, S. F.
    Fortune, J. M.
    Pedersen, L. C.
    Kunkel, T. A.
    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, 2007, 48 (07) : 575 - 575
  • [23] The structure of the N-terminal domain of the product of the lissencephaly gene Lis1 and its functional implications
    Kim, MH
    Cooper, DR
    Oleksy, A
    Devedjiev, Y
    Derewenda, U
    Reiner, O
    Otlewski, J
    Derewenda, ZS
    STRUCTURE, 2004, 12 (06) : 987 - 998
  • [24] Potential role of N-terminal extension and individual motifs (I to IV) on structural stability of human βA3/A1 crystallin
    Gupta, R
    Srivastava, K
    Srivastava, OP
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2005, 46
  • [25] Molecular Interaction between the Chaperone Hsc70 and the N-terminal Flank of Huntingtin Exon 1 Modulates Aggregation
    Monsellier, Elodie
    Redeker, Virginie
    Ruiz-Arlandis, Gemma
    Bousset, Luc
    Melki, Ronald
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2015, 290 (05) : 2560 - 2576
  • [26] The impact of N-terminal modification of PAA with different chain lengths on the structure,thermal stability and pH sensitivity of succinylated collagen
    Juntao Zhang
    Yang Liu
    Haofei Xu
    Peishan Sui
    Tianyi Liu
    Mingming Zheng
    Evgeny AShirshin
    Benmei Wei
    Chengzhi Xu
    Haibo Wang
    Collagen and Leather, 2024, 6 (02) : 93 - 103
  • [27] The impact of N-terminal modification of PAA with different chain lengths on the structure, thermal stability and pH sensitivity of succinylated collagen
    Zhang, Juntao
    Liu, Yang
    Xu, Haofei
    Sui, Peishan
    Liu, Tianyi
    Zheng, Mingming
    Shirshin, Evgeny A.
    Wei, Benmei
    Xu, Chengzhi
    Wang, Haibo
    COLLAGEN AND LEATHER, 2024, 6 (01)
  • [28] Cell membrane translocation and secondary structure conversion of the N-terminal (1-28) part of the prion protein
    Graslund, A
    Lundberg, P
    Magzoub, M
    Lindberg, M
    Hällbrink, M
    Jarvet, J
    Eriksson, G
    Langel, U
    BIOPHYSICAL JOURNAL, 2004, 86 (01) : 559A - 559A
  • [29] NMR solution structure and membrane interaction of the N-terminal sequence (1-30) of the bovine prion protein
    Biverståhl, H
    Andersson, A
    Gräslund, A
    Mäler, L
    BIOCHEMISTRY, 2004, 43 (47) : 14940 - 14947
  • [30] Structure and function of PspA and Vipp1 N-terminal peptides: Insights into the membrane stress sensing and mitigation
    McDonald, Christopher
    Jovanovic, Goran
    Wallace, B. A.
    Ces, Oscar
    Buck, Martin
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2017, 1859 (01): : 28 - 39