KERNEL FEATURE EXTRACTION FOR HYPERSPECTRAL IMAGE CLASSIFICATION USING CHUNKLET CONSTRAINTS

被引:0
|
作者
Zhao, Haishi [1 ]
Lu, Laijun [1 ]
Yang, Chen [1 ]
Guan, Renchun [2 ]
机构
[1] Jilin Univ, Coll Earth Sci, Changchun 130061, Peoples R China
[2] Jilin Univ, Coll Comp Sci & Technol, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; hyperspectral remote sensing image; chunklet constraints; kernel method;
D O I
10.4149/cai_2017_1_205
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A novel semi-supervised kernel feature extraction algorithm to combine an efficient metric learning method, i.e. relevant component analysis (RCA), and kernel trick is presented for hyperspectral imagery land-cover classification. This method obtains projection of the input data by learning an optimal nonlinear transformation via a chunklet constraints-based FDA criterion, and called chunklet-based kernel relevant component analysis (CKRCA). The proposed method is appealing as it constructs the kernel very intuitively for the RCA method and does not require any labeled information. The effectiveness of the proposed CKRCA is successfully illustrated in hyperspectral remote sensing image classification. Experimental results demonstrate that the proposed method can greatly improve the classification accuracy compared with traditional linear and conventional kernel-based methods.
引用
收藏
页码:205 / 222
页数:18
相关论文
共 50 条
  • [1] Kernel Nonparametric Weighted Feature Extraction for Hyperspectral Image Classification
    Kuo, Bor-Chen
    Li, Cheng-Hsuan
    Yang, Jinn-Min
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (04): : 1139 - 1155
  • [2] Hyperspectral Image Classification Using Kernel-Based Nonparametric Weighted Feature Extraction
    Kuo, Bor-Chen
    Li, Cheng-Hsuan
    Sheu, Tian-Wei
    Liao, Hsueh-Hua
    [J]. 2006 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, 2006, : 557 - +
  • [3] Feature Extraction Based on Kernel Sparse Representation for Hyperspectral Image Classification
    Yuan, Haoliang
    Luo, Huiwu
    Yang, Lina
    Lu, Yang
    Wang, Yulong
    Tang, Yuan Yan
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2014, : 4071 - 4076
  • [4] A KERNEL-BASED FEATURE EXTRACTION METHOD FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Hsieh, Pei-Jyun
    Li, Cheng-Hsuan
    Chen, Kai-Ching
    Kuo, Bor-Chen
    [J]. 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014,
  • [5] Feature Extraction for Hyperspectral Image Classification
    Uddin, M. P.
    Mamun, M. A.
    Hossain, M. A.
    [J]. 2017 IEEE REGION 10 HUMANITARIAN TECHNOLOGY CONFERENCE (R10-HTC), 2017, : 379 - 382
  • [6] A new kernel method for hyperspectral image feature extraction
    [J]. Gao, Lianru (gaolr@radi.ac.cn), 1600, Taylor and Francis Ltd. (20):
  • [7] The Influence of Kernel Principle Componets Based Feature Extraction on Hyperspectral Image Classification Accuracy
    Yalcin, Eylem Yaman
    Ertuerk, Sarp
    [J]. 2008 IEEE 16TH SIGNAL PROCESSING, COMMUNICATION AND APPLICATIONS CONFERENCE, VOLS 1 AND 2, 2008, : 745 - 748
  • [8] Salient feature extraction for hyperspectral image classification
    Yu, Xuchu
    Wang, Ruirui
    Liu, Bing
    Yu, Anzhu
    [J]. REMOTE SENSING LETTERS, 2019, 10 (06) : 553 - 562
  • [9] Slow feature extraction for hyperspectral image classification
    Liu, Bing
    Yu, Anzhu
    Tan, Xiong
    Wang, Ruirui
    [J]. REMOTE SENSING LETTERS, 2021, 12 (05) : 429 - 438
  • [10] Feature extraction for hyperspectral image classification: a review
    Kumar, Brajesh
    Dikshit, Onkar
    Gupta, Ashwani
    Singh, Manoj Kumar
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2020, 41 (16) : 6248 - 6287