Kernel Nonparametric Weighted Feature Extraction for Hyperspectral Image Classification

被引:137
|
作者
Kuo, Bor-Chen [1 ]
Li, Cheng-Hsuan [1 ,2 ]
Yang, Jinn-Min [3 ]
机构
[1] Natl Taichung Univ, Grad Inst Educ Measurement & Stat, Taichung 40306, Taiwan
[2] Natl Chiao Tung Univ, Dept Elect & Control Engn, Hsinchu 300, Taiwan
[3] Natl Chung Cheng Univ, Dept Comp Sci & Informat Engn, Chiayi 621, Taiwan
来源
关键词
Feature extraction; image classification; LINEAR FEATURE-EXTRACTION; COMPONENT ANALYSIS; DISCRIMINANT; FRAMEWORK;
D O I
10.1109/TGRS.2008.2008308
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In recent years, many studies show that kernel methods are computationally efficient, robust, and stable for pattern analysis. Many kernel-based classifiers were designed and applied to classify remote-sensed data, and some results show that kernel-based classifiers have satisfying performances. Many studies about hyperspectral image classification also show that nonparametric weighted feature extraction (NWFE) is a powerful tool for extracting hyperspectral image features. However, NWFE is still based on linear transformation. In this paper, the kernel method is applied to extend NWFE to kernel-based NWFE (KNWFE). The new KNWFE possesses the advantages of both linear and nonlinear transformation, and the experimental results show that KNWFE outperforms NWFE, decision-boundary feature extraction, independent component analysis, kernel-based principal component analysis, and generalized discriminant analysis.
引用
收藏
页码:1139 / 1155
页数:17
相关论文
共 50 条
  • [1] Hyperspectral Image Classification Using Kernel-Based Nonparametric Weighted Feature Extraction
    Kuo, Bor-Chen
    Li, Cheng-Hsuan
    Sheu, Tian-Wei
    Liao, Hsueh-Hua
    [J]. 2006 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, 2006, : 557 - +
  • [2] AN AUTOMATIC KERNEL PARAMETER SELECTION METHOD FOR KERNEL NONPARAMETRIC WEIGHTED FEATURE EXTRACTION WITH THE RBF KERNEL FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Hsieh, Pei-Jyun
    Li, Cheng-Hsuan
    Kuo, Bor-Chen
    Tsai, Pei-Ling
    [J]. 2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 1706 - 1709
  • [3] Kernel nonparametric weighted feature extraction for classification
    Kuo, BC
    Li, CH
    [J]. AI 2005: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2005, 3809 : 567 - 576
  • [4] Nonparametric Fuzzy Feature Extraction for Hyperspectral Image Classification
    Yang, Jinn-Min
    Yu, Pao-Ta
    Kuo, Bor-Chen
    Su, Ming-Hsiang
    [J]. INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2010, 12 (03) : 208 - 217
  • [5] Hyperspectral data classification using nonparametric weighted feature extraction
    Kuo, BC
    Landgrebre, DA
    [J]. IGARSS 2002: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM AND 24TH CANADIAN SYMPOSIUM ON REMOTE SENSING, VOLS I-VI, PROCEEDINGS: REMOTE SENSING: INTEGRATING OUR VIEW OF THE PLANET, 2002, : 1428 - 1430
  • [6] ADAPTIVE NONPARAMETRIC WEIGHED FEATURE EXTRACTION FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Kuo, Bor-Chen
    Lin, Shih-Syun
    Ho, Hsin-Hua
    Yang, Jinn-Min
    [J]. 2009 FIRST WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING, 2009, : 74 - +
  • [7] A NOVEL KERNEL-BASED NONPARAMETRIC FEATURE EXTRACTION METHOD FOR REMOTELY SENSED HYPERSPECTRAL IMAGE CLASSIFICATION
    Yang, Jinn-Min
    [J]. 2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 3070 - 3073
  • [8] Nonparametric weighted feature extraction for classification
    Kuo, BC
    Landgrebe, DA
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (05): : 1096 - 1105
  • [9] Feature Extraction Based on Kernel Sparse Representation for Hyperspectral Image Classification
    Yuan, Haoliang
    Luo, Huiwu
    Yang, Lina
    Lu, Yang
    Wang, Yulong
    Tang, Yuan Yan
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2014, : 4071 - 4076
  • [10] KERNEL FEATURE EXTRACTION FOR HYPERSPECTRAL IMAGE CLASSIFICATION USING CHUNKLET CONSTRAINTS
    Zhao, Haishi
    Lu, Laijun
    Yang, Chen
    Guan, Renchun
    [J]. COMPUTING AND INFORMATICS, 2017, 36 (01) : 205 - 222