Decomposition, Approximation, and Coloring of Odd-Minor-Free Graphs

被引:0
|
作者
Demaine, Erik D. [1 ]
Hajiaghayi, MohammadTaghi [2 ]
Kawarabayashi, Ken-ichi [3 ]
机构
[1] MIT, Comp Sci & Artificial Intelligence Lab, 32 Vassar St, Cambridge, MA 02139 USA
[2] AT&T Labs Res, Florham Pk, NJ 07932 USA
[3] Natl Inst Informat, Chiyoda Ku, Tokyo 1018430, Japan
关键词
EVERY PLANAR MAP; TREE-WIDTH; ALGORITHMS; CIRCUITS; MINERS; NUMBER;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove two structural decomposition theorems about graphs excluding a fixed odd minor PI, and show how these theorems can be used to obtain approximation algorithms for several algorithmic problems in such graphs Our decomposition results provide new structural insights into odd-H-minor-free graphs, on the one hand generalizing the central structural result from Graph Minor Theory, and on the other hand providing an algorithmic decomposition into two bounded-treewidth graphs, generalizing a similar result for minors As one example of how these structural results conquer difficult problems, we obtain a polynomial-time 2-approximation for vertex coloring in odd-H-minor-free graphs, improving on the previous O(vertical bar V(H)vertical bar)-approximation for such graphs and generalizing the previous 2-approximation for H-minor-free graphs The class of odd-H-minor-free graphs is a vast generalization of the well-studied H-minor-free graph families and includes, for example, all bipartite graphs plus a bounded number of apices. Odd-H-minor-free graphs are particularly interesting from a structural graph theory perspective because they break away from the sparsity of H-minor-free graphs, permitting a quadratic number of edges.
引用
收藏
页码:329 / +
页数:4
相关论文
共 50 条
  • [41] Note on coloring graphs without odd-Kk-minors
    Kawarabayashi, Ken-ichi
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2009, 99 (04) : 728 - 731
  • [42] Odd facial total-coloring of unicyclic plane graphs
    Czap, Julius
    DISCRETE MATHEMATICS LETTERS, 2022, 10 : 56 - 59
  • [43] Fully dynamic approximation schemes on planar and apex-minor-free graphs
    Korhonen, Tuukka
    Nadara, Wojciech
    Pilipczuk, Michal
    Sokolowski, Marek
    PROCEEDINGS OF THE 2024 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2024, : 296 - 313
  • [44] Approximation Algorithms via Structural Results for Apex-Minor-Free Graphs
    Demaine, Erik D.
    Hajiaghayi, MohammadTaghi
    Kawarabayashi, Ken-ichi
    AUTOMATA, LANGUAGES AND PROGRAMMING, PT I, 2009, 5555 : 316 - +
  • [45] Coloring immersion-free graphs
    Kakimura, Naonori
    Kawarabayashi, Ken-ichi
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2016, 121 : 284 - 307
  • [46] CONFLICT-FREE COLORING OF GRAPHS
    Abel, Zachary
    Alvarez, Victor
    Demaine, Erik D.
    Fekete, Sandor P.
    Gour, Aman
    Hesterberg, Adam
    Keldenich, Phillip
    Scheffer, Christian
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2018, 32 (04) : 2675 - 2702
  • [47] APPROXIMATION AND DECOMPOSITION BY EXTREMAL GRAPHS
    MIRONOV, AA
    TSURKOV, VI
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1993, 33 (02) : 251 - 262
  • [48] Cops, Robbers, and Threatening Skeletons: Padded Decomposition for Minor-Free Graphs
    Abraham, Ittai
    Gavoille, Cyril
    Gupta, Anupam
    Neiman, Ofer
    Talwar, Kunal
    STOC'14: PROCEEDINGS OF THE 46TH ANNUAL 2014 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2014, : 79 - 88
  • [49] COPS, ROBBERS, AND THREATENING SKELETONS: PADDED DECOMPOSITION FOR MINOR-FREE GRAPHS
    Abraham, Ittai
    Gavoille, Cyril
    Gupta, Anupam
    Neiman, Ofer
    Talwar, Kunal
    SIAM JOURNAL ON COMPUTING, 2019, 48 (03) : 1120 - 1145
  • [50] Complexity of approximation of 3-edge-coloring of graphs
    Kochol, Martin
    Krivonakova, Nad'a
    Smejova, Silvia
    Srankova, Katarina
    INFORMATION PROCESSING LETTERS, 2008, 108 (04) : 238 - 241