Dynamic plowing nanolithography on polymethylmethacrylate using an atomic force microscope

被引:79
|
作者
Heyde, M
Rademann, K
Cappella, B
Geuss, M
Sturm, H
Spangenberg, T
Niehus, H
机构
[1] Humboldt Univ, Inst Phys & Theoret Chem, D-10117 Berlin, Germany
[2] Fed Inst Mat Res, D-12200 Berlin, Germany
[3] Humboldt Univ, Inst Phys, D-10117 Berlin, Germany
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2001年 / 72卷 / 01期
关键词
D O I
10.1063/1.1326053
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We present dynamic plowing nanolithography on polymethylmethacrylate films, performed with a scan-linearized atomic force microscope able to scan up to 250 mum with high resolution. Modifications of the surface are obtained by plastically indenting the film surface with a vibrating tip. By changing the oscillation amplitude of the cantilever, i.e., the indentation depth, surfaces can be either imaged or modified. A program devoted to the control of the scanning process is also presented. The software basically converts the gray scale of pixel images into voltages used to control the dither piezo driving cantilever oscillations. The advantages of our experimental setup and the dependence of lithography efficiency on scanning parameters are discussed. Some insights into the process of surface modifications are presented. (C) 2001 American Institute of Physics.
引用
收藏
页码:136 / 141
页数:6
相关论文
共 50 条
  • [31] Recent progress in the functionalization of atomic force microscope probes using electron-beam nanolithography
    Zhou, H
    Mills, G
    Chong, BK
    Midha, A
    Donaldson, L
    Weaver, JMR
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1999, 17 (04): : 2233 - 2239
  • [32] Creation and measurement of nanodots with combined dynamic mode 'dip-pen' nanolithography based on atomic force microscope
    Cui, Jianlei
    Yang, Lijun
    Wang, Yang
    MICRO & NANO LETTERS, 2014, 9 (03): : 189 - 192
  • [33] Highly Reproducible Nanolithography by Dynamic Plough of an Atomic-Force Microscope Tip and Thermal-Annealing Treatment
    Lu, Xiaofeng
    Balocco, Claudio
    Yang, Fuhua
    Song, Aimin M.
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2011, 10 (01) : 53 - 58
  • [34] NANOLITHOGRAPHY WITH AN ATOMIC-FORCE MICROSCOPE FOR INTEGRATED FABRICATION OF QUANTUM ELECTRONIC DEVICES
    WENDEL, M
    KUHN, S
    LORENZ, H
    KOTTHAUS, JP
    HOLLAND, M
    APPLIED PHYSICS LETTERS, 1994, 65 (14) : 1775 - 1777
  • [35] A novel nanolithography technique for self-assembled monolayers using a current sensing atomic force microscope
    Zhao, JW
    Uosaki, K
    LANGMUIR, 2001, 17 (25) : 7784 - 7788
  • [36] Atomic force microscope nanolithography of graphene: Cuts, pseudocuts, and tip current measurements
    Puddy, R. K.
    Scard, P. H.
    Tyndall, D.
    Connolly, M. R.
    Smith, C. G.
    Jones, G. A. C.
    Lombardo, A.
    Ferrari, A. C.
    Buitelaar, M. R.
    APPLIED PHYSICS LETTERS, 2011, 98 (13)
  • [37] Transport spectroscopy of a graphene quantum dot fabricated by atomic force microscope nanolithography
    Puddy, R. K.
    Chua, C. J.
    Buitelaar, M. R.
    APPLIED PHYSICS LETTERS, 2013, 103 (18)
  • [38] Plowing on the sub-50 nm scale: Nanolithography using scanning force microscopy
    Kunze, U
    Klehn, B
    ADVANCED MATERIALS, 1999, 11 (17) : 1473 - 1475
  • [39] Atomic force microscope nanolithography: dip-pen, nanoshaving, nanografting, tapping mode, electrochemical and thermal nanolithography
    Rosa, Luis G.
    Liang, Jian
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (48)
  • [40] Simulation of asperity plowing in an atomic force microscope Part I: Experimental and theoretical methods
    Hector, LG
    Schmid, SR
    WEAR, 1998, 215 (1-2) : 247 - 256