A Bayesian hierarchical approach to ensemble weather forecasting

被引:0
|
作者
Di Narzo, A. F. [1 ]
Cocchi, D. [1 ]
机构
[1] Univ Bologna, Dipartimento Sci Stat Paolo Fortunati, I-40126 Bologna, Italy
关键词
Ensemble prediction system; Hierarchical Bayesian model; Predictive distribution; Probabilistic forecast; Verification rank histogram; EVALUATING RANK HISTOGRAMS; CHI-SQUARE TEST; ECMWF; CALIBRATION; REFORECASTS; PREDICTION; SKILL;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In meteorology, the traditional approach to forecasting employs deterministic models mimicking atmospheric dynamics. Forecast uncertainty due to partial knowledge of the initial conditions is tackled by ensemble predictions systems. Probabilistic forecasting is a relatively new approach which may properly account for all sources of uncertainty. We propose a hierarchical Bayesian model which develops this idea and makes it possible to deal with ensemble predictions systems with non-identifiable members by using a suitable definition of the second level of the model. An application to Italian small-scale temperature data is shown.
引用
收藏
页码:405 / 422
页数:18
相关论文
共 50 条
  • [1] A Bayesian Hierarchical Network Model for Daily Streamflow Ensemble Forecasting
    Ossandon, Alvaro
    Rajagopalan, Balaji
    Lall, Upmanu
    Nanditha, J. S.
    Mishra, Vimal
    WATER RESOURCES RESEARCH, 2021, 57 (09)
  • [2] Forecasting stock prices using a hierarchical Bayesian approach
    Ying, J
    Kuo, L
    Seow, GS
    JOURNAL OF FORECASTING, 2005, 24 (01) : 39 - 59
  • [3] Forecasting of cohort fertility under a hierarchical Bayesian approach
    Ellison, Joanne
    Dodd, Erengul
    Forster, Jonathan J.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2020, 183 (03) : 829 - 856
  • [4] A dynamic hierarchical Bayesian approach for forecasting vegetation condition
    Salakpi, Edward E.
    Hurley, Peter D.
    Muthoka, James M.
    Bowell, Andrew
    Oliver, Seb
    Rowhani, Pedram
    NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2022, 22 (08) : 2725 - 2749
  • [5] Bayesian approach to decision making using ensemble weather forecasts
    Katz, RW
    Ehrendorfer, M
    WEATHER AND FORECASTING, 2006, 21 (02) : 220 - 231
  • [6] Bayesian enhanced ensemble approach (BEEA) for time series forecasting
    Rodriguez Rivero, Cristian
    Pucheta, Julian
    Otano, Paula
    Juarez, Gustavo
    Franco, Leonardo
    Patino, Daniel
    Velazco, Raoul
    2018 IEEE BIENNIAL CONGRESS OF ARGENTINA (ARGENCON), 2018,
  • [7] Ocean ensemble forecasting. Part I: Ensemble Mediterranean winds from a Bayesian hierarchical model
    Milliff, Ralph F.
    Bonazzi, Alessandro
    Wikle, Christopher K.
    Pinardi, Nadia
    Berliner, L. Mark
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (657) : 858 - 878
  • [8] Ensemble models for solar power forecasting-a weather classification approach
    Amarasinghe, P. A. G. M.
    Abeygunawardana, N. S.
    Jayasekara, T. N.
    Edirisinghe, E. A. J. P.
    Abeygunawardane, S. K.
    AIMS ENERGY, 2020, 8 (02) : 252 - 271
  • [9] Advances in Space Weather Ensemble Forecasting
    Knipp, Delores J.
    SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2016, 14 (02): : 52 - 53
  • [10] An ensemble of neural networks for weather forecasting
    Imran Maqsood
    Muhammad Riaz Khan
    Ajith Abraham
    Neural Computing & Applications, 2004, 13 : 112 - 122