Forecasting of cohort fertility under a hierarchical Bayesian approach

被引:7
|
作者
Ellison, Joanne [1 ]
Dodd, Erengul [1 ]
Forster, Jonathan J. [2 ]
机构
[1] Univ Southampton, Southampton, Hants, England
[2] Univ Warwick, Coventry, W Midlands, England
基金
英国工程与自然科学研究理事会; 英国经济与社会研究理事会;
关键词
Cohort fertility; Forecasting; Hamiltonian Monte Carlo methods; Hierarchical Bayesian models; Human fertility database; Scoring rules; SCORING RULES; RATES; PREDICTION; MORTALITY; TEMPO;
D O I
10.1111/rssa.12566
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
Fertility projections are a key determinant of population forecasts, which are widely used by government policy makers and planners. In keeping with the recent literature, we propose an intuitive and transparent hierarchical Bayesian model to forecast cohort fertility. Using Hamiltonian Monte Carlo methods and a data set from the human fertility database, we obtain fertility forecasts for 30 countries. We use scoring rules to assess the predictive accuracy of the forecasts quantitatively; these indicate that our model predicts with an accuracy comparable with that of the best-performing models in the current literature overall, with stronger performance for countries without a recent structural shift. Our findings support the position of hierarchical Bayesian modelling at the forefront of population forecasting methods.
引用
收藏
页码:829 / 856
页数:28
相关论文
共 50 条
  • [1] Bayesian Forecasting of Cohort Fertility
    Schmertmann, Carl
    Zagheni, Emilio
    Goldstein, Joshua R.
    Myrskylae, Mikko
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2014, 109 (506) : 500 - 513
  • [2] A Bayesian hierarchical approach to ensemble weather forecasting
    Di Narzo, A. F.
    Cocchi, D.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2010, 59 : 405 - 422
  • [3] Forecasting stock prices using a hierarchical Bayesian approach
    Ying, J
    Kuo, L
    Seow, GS
    JOURNAL OF FORECASTING, 2005, 24 (01) : 39 - 59
  • [4] A dynamic hierarchical Bayesian approach for forecasting vegetation condition
    Salakpi, Edward E.
    Hurley, Peter D.
    Muthoka, James M.
    Bowell, Andrew
    Oliver, Seb
    Rowhani, Pedram
    NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2022, 22 (08) : 2725 - 2749
  • [5] Projecting Spanish fertility at regional level: A hierarchical Bayesian approach
    Rafael Caro-BarreraID, Jose
    Garcia-Moreno Garcia, Maria de los Banos
    Perez-Priego, Manuel
    PLOS ONE, 2022, 17 (10):
  • [6] Hierarchical Bayesian approach to reliability estimation under competing risk
    Badarinathi, Ravija
    Tiwari, Ram C.
    Microelectronics Reliability, 1992, 32 (1-2) : 249 - 258
  • [7] Hierarchical dynamic modelling for individualized Bayesian forecasting
    Yanchenko, Anna K.
    Deng, Di Daniel
    Li, Jinglan
    Cron, Andrew J.
    West, Mike
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2023, 72 (01) : 144 - 164
  • [8] Forecasting output growth rates and median output growth rates: A Hierarchical Bayesian approach
    Tobias, JL
    JOURNAL OF FORECASTING, 2001, 20 (05) : 297 - 314
  • [9] HIERARCHICAL BAYESIAN-APPROACH TO RELIABILITY ESTIMATION UNDER COMPETING RISK
    BADARINATHI, R
    TIWARI, RC
    MICROELECTRONICS AND RELIABILITY, 1992, 32 (1-2): : 249 - 258
  • [10] Forecasting cohort incomplete fertility: A method and an application
    Li, N
    Wu, Z
    POPULATION STUDIES-A JOURNAL OF DEMOGRAPHY, 2003, 57 (03): : 303 - 320