Probing Quantum Speed Limits with Ultracold Gases

被引:40
|
作者
del Campo, Adolfo [1 ,2 ,3 ,4 ,5 ]
机构
[1] Univ Luxembourg, Dept Phys & Mat Sci, L-1511 Luxembourg, Luxembourg
[2] Donostia Int Phys Ctr, E-20018 San Sebastian, Spain
[3] Basque Fdn Sci, IKERBASQUE, E-48013 Bilbao, Spain
[4] Univ Massachusetts, Dept Phys, Boston, MA 02125 USA
[5] Los Alamos Natl Lab, Theory Div, MS-B213, Los Alamos, NM 87545 USA
关键词
SCATTERING; SYSTEMS;
D O I
10.1103/PhysRevLett.126.180603
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum speed limits (QSLs) rule the minimum time for a quantum state to evolve into a distinguishable state in an arbitrary physical process. These fundamental results constrain a notion of distance traveled by the quantum state, known as the Bums angle, in terms of the speed of evolution set by nonadiabatic energy fluctuations. I theoretically propose how to measure QSLs in an ultracold quantum gas confined in a time-dependent harmonic trap. In this highly-dimensional system of continuous variables, quantum tomography is prohibited. Yet, QSLs can be probed whenever the dynamics is self-similar by measuring as a function of time the cloud size of the ultracold gas. This makes it possible to determine the Bures angle and energy fluctuations, as I discuss for various ultracold atomic systems.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Topological quantum matter with ultracold gases in optical lattices
    Goldman N.
    Budich J.C.
    Zoller P.
    Goldman, N. (ngoldman@ulb.ac.be), 1600, Nature Publishing Group (12): : 639 - 645
  • [42] Imaging of quantum Hall states in ultracold atomic gases
    Douglas, James S.
    Burnett, Keith
    PHYSICAL REVIEW A, 2011, 84 (05):
  • [43] Microelectromagnets for trapping and manipulating ultracold atomic quantum gases
    Fortágh, J
    Ott, H
    Schlotterbeck, G
    Zimmermann, C
    Herzog, B
    Wharam, D
    APPLIED PHYSICS LETTERS, 2002, 81 (06) : 1146 - 1148
  • [44] Prospects of ultracold Rydberg gases for quantum information processing
    Reetz-Lamour, Markus
    Amthor, Thomas
    Deighnayr, Johannes
    Westermann, Sebastian
    Singer, Kilian
    de Oliveira, Andre Luiz
    Marcassa, Luis Gustavo
    Weidemueller, Matthias
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2006, 54 (8-10): : 776 - 787
  • [45] Quantum density anomaly in optically trapped ultracold gases
    Rizzatti, Eduardo O.
    Barbosa, Marco Aurelio A.
    Barbosa, Marcia C.
    PHYSICAL REVIEW A, 2020, 102 (03)
  • [46] Hanbury Brown Twiss effect for ultracold quantum gases
    Schellekens, M
    Hoppeler, R
    Perrin, A
    Gomes, JV
    Boiron, D
    Aspect, A
    Westbrook, CI
    SCIENCE, 2005, 310 (5748) : 648 - 651
  • [47] Ultracold atomic quantum gases far from equilibrium
    Gasenzer, Thomas
    Berges, Juergen
    Schmidt, Michael G.
    Seco, Marcos
    NUCLEAR PHYSICS A, 2007, 785 (1-2) : 214C - 217C
  • [48] Quantum control of spin correlations in ultracold lattice gases
    Hauke, P.
    Sewell, R. J.
    Mitchell, M. W.
    Lewenstein, M.
    PHYSICAL REVIEW A, 2013, 87 (02):
  • [49] Mesoscopic effects in quantum phases of ultracold quantum gases in optical lattices
    Carr, L. D.
    Wall, M. L.
    Schirmer, D. G.
    Brown, R. C.
    Williams, J. E.
    Clark, Charles W.
    PHYSICAL REVIEW A, 2010, 81 (01):
  • [50] Quantum phase slips: from condensed matter to ultracold quantum gases
    D'Errico, C.
    Abbate, S. Scaffidi
    Modugno, G.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 375 (2108):