Towards a globular path object for weak ∞-groupoids

被引:1
|
作者
Lanari, Edoardo
机构
关键词
QUILLEN MODEL STRUCTURE;
D O I
10.1016/j.jpaa.2019.06.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The goal of this paper is to address the problem of building a path object for the category of Grothendieck (weak) infinity-groupoids. This is the missing piece for a proof of Grothendieck's homotopy hypothesis. We show how to endow the putative underlying globular set with a system of composition, a system of identities and a system of inverses, together with an approximation of the interpretation of any map for a theory of infinity-categories. Finally, we introduce a coglobular infinity-groupoid representing modifications of infinity-groupoids, and prove some basic properties it satisfies, that will be exploited to interpret all 2-dimensional categorical operations on cells of the path object PX of a given infinity-groupoid X. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:630 / 702
页数:73
相关论文
共 50 条
  • [31] The Path Towards Authoritarianism
    Bustamante Fontecha, Alejandro
    REVISTA CIENCIAS SOCIALES Y EDUCACION, 2016, 5 (09): : 127 - 135
  • [32] "1989" and the Path Towards It
    Boyer, Christoph
    VIERTELJAHRSHEFTE FUR ZEITGESCHICHTE, 2011, 59 (01): : 101 - +
  • [33] Weak Poincare inequalities on path spaces
    Wang, FY
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2004, 2004 (02) : 89 - 108
  • [34] Weak values from path integrals
    Matzkin, A.
    PHYSICAL REVIEW RESEARCH, 2020, 2 (03):
  • [35] Optimal path in weak and strong disorder
    Schwartz, N
    Porto, M
    Havlin, S
    Bunde, A
    PHYSICA A, 1999, 266 (1-4): : 317 - 321
  • [36] Optimal path in weak and strong disorder
    Minerva Ctr. and Dept. of Physics, Bar-Ilan University, 52900, Ramat-Gan, Israel
    不详
    Phys A Stat Mech Appl, 1-4 (317-321):
  • [37] SAMPLE PATH CRITERIA FOR WEAK MAJORIZATION
    SPARAGGIS, PD
    TOWSLEY, D
    CASSANDRAS, CG
    ADVANCES IN APPLIED PROBABILITY, 1994, 26 (01) : 155 - 171
  • [38] Weak coherent state path integrals
    Hartmann, L
    Klauder, JR
    JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (01) : 87 - 99
  • [39] Path Planning for Belt Object Manipulation
    Wakamatsu, Hidefumi
    Morinaga, Eiji
    Arai, Eiji
    Hirai, Shinichi
    2012 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2012, : 4334 - 4339
  • [40] Object and path perception in simulated locomotion
    Flueckiger, M.
    Cutting, J. E.
    Leoni-Salem, C.
    Baumberger, B.
    PERCEPTION, 1996, 25 : 89 - 89