Prevalence of ammonia-oxidizing bacteria over ammonia-oxidizing archaea in sediments as related to nutrient loading in Chinese aquaculture ponds

被引:14
|
作者
Zhou, Zijun [1 ,2 ]
Li, Hui [3 ]
Song, Chunlei [1 ]
Cao, Xiuyun [1 ]
Zhou, Yiyong [1 ]
机构
[1] Chinese Acad Sci, Inst Hydrobiol, State Key Lab Freshwater Ecol & Biotechnol, 7 Donghu South Rd, Wuhan 430072, Hubei, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100039, Peoples R China
[3] Tongren Univ, Coll Biol & A&F Engn, Tongren 554300, Guizhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Ammonia-oxidizing archaea; Ammonia-oxidizing bacteria; Ammonium; Aquaculture ponds; Phosphorus; LAKE TAIHU; SURFACE SEDIMENTS; SOIL; DIVERSITY; ABUNDANCE; NITRIFICATION; DECOMPOSITION; COMMUNITIES; INTERFACE; SHRIMP;
D O I
10.1007/s11368-017-1651-2
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Purpose Nitrogen (N) application in excess of assimilatory capacity for aquaculture ponds can lead to water-quality deterioration through ammonia accumulation with toxicity to fish. Ammonia-oxidizing archaea (AOA) and bacteria (AOB) potentially process extra ammonium, so their abundance and diversity are of great ecological significance. This study aimed to reveal variations in communities of AOA and AOB as affected by aquaculture activities. Materials and methods From June to September 2012, water and sediments were sampled monthly in three ponds feeding Mandarin fish in a suburb of Wuhan City, China. Molecular methods based on ammonia monooxygenase (amoA) gene were used to determine abundance and diversity of AOA and AOB in the sediments. Results and discussion The pond with the highest fish stock had the highest nutrient loadings in terms of different forms of N and carbon (C) in both sediment and water. The abundance and diversity of AOB were significantly higher than those of AOA in the sediment. The AOB abundance showed a significantly positive relationship to concentration of soluble reactive phosphorus (SRP) in interstitial water, and both abundance and diversity of AOA were significantly negative to concentration of ammonium in interstitial water. Furthermore, AOA species affiliated to Nitrososphaera-like and Nitrosophaera Cluster was distinguishable from those observed in other aquaculture environments. Conclusions Nutrients in sediment were enriched by intensive aquaculture activity, among which organic N and C, together with ammonium and SRP, shaped the communities of ammonia oxidizers, with AOB dominating over AOA in terms of abundance and diversity.
引用
收藏
页码:1928 / 1938
页数:11
相关论文
共 50 条
  • [41] Affinity informs environmental cooperation between ammonia-oxidizing archaea (AOA) and anaerobic ammonia-oxidizing (Anammox) bacteria
    Straka, Levi L.
    Meinhardt, Kelley A.
    Bollmann, Annette
    Stahl, David A.
    Winkler, Mari-K H.
    ISME JOURNAL, 2019, 13 (08): : 1997 - 2004
  • [42] Quantitative Analyses of Ammonia-oxidizing Archaea (AOA) and Ammonia-oxidizing Bacteria (AOB) in Fields with Different Soil Types
    Morimoto, Sho
    Hayatsu, Masahito
    Hoshino, Yuko Takada
    Nagaoka, Kazunari
    Yamazaki, Masatsugu
    Karasawa, Toshihiko
    Takenaka, Makoto
    Akiyama, Hiroko
    MICROBES AND ENVIRONMENTS, 2011, 26 (03) : 248 - 253
  • [43] Ammonia-oxidizing archaea have better adaptability in oxygenated/hypoxic alternant conditions compared to ammonia-oxidizing bacteria
    Liu, Shuai
    Hu, Baolan
    He, Zhanfei
    Zhang, Bin
    Tian, Guangming
    Zheng, Ping
    Fang, Fang
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2015, 99 (20) : 8587 - 8596
  • [44] Ammonia-oxidizing archaea and ammonia-oxidizing bacteria communities respond differently in oxy-gen-limited habitats
    Du, Jialin
    Meng, Lin
    Qiu, Mingsheng
    Chen, Shuaiwei
    Zhang, Binghui
    Song, Wenjing
    Cong, Ping
    Zheng, Xuebo
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2022, 10
  • [45] Affinity informs environmental cooperation between ammonia-oxidizing archaea (AOA) and anaerobic ammonia-oxidizing (Anammox) bacteria
    Levi L. Straka
    Kelley A. Meinhardt
    Annette Bollmann
    David A. Stahl
    Mari-K. H. Winkler
    The ISME Journal, 2019, 13 : 1997 - 2004
  • [46] Ammonia-oxidizing archaea have better adaptability in oxygenated/hypoxic alternant conditions compared to ammonia-oxidizing bacteria
    Shuai Liu
    Baolan Hu
    Zhanfei He
    Bin Zhang
    Guangming Tian
    Ping Zheng
    Fang Fang
    Applied Microbiology and Biotechnology, 2015, 99 : 8587 - 8596
  • [47] Inhibition of ammonia-oxidizing bacteria promotes the growth of ammonia-oxidizing archaea in ammonium-rich alkaline soils
    Chang YIN
    Xiaoping FAN
    Hao CHEN
    Mujun YE
    Guochao YAN
    Tingqiang LI
    Hongyun PENG
    Shengzhe E
    Zongxian CHE
    Steven A.WAKELIN
    Yongchao LIANG
    Pedosphere , 2022, (04) : 532 - 542
  • [48] Manure fertilization alters the population of ammonia-oxidizing bacteria rather than ammonia-oxidizing archaea in a paddy soil
    Wang, Yu
    Zhu, Guibing
    Song, Liyan
    Wang, Shanyun
    Yin, Chengqing
    JOURNAL OF BASIC MICROBIOLOGY, 2014, 54 (03) : 190 - 197
  • [49] Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils
    Zhang, Li-Mei
    Hu, Hang-Wei
    Shen, Ju-Pei
    He, Ji-Zheng
    ISME JOURNAL, 2012, 6 (05): : 1032 - 1045
  • [50] Phylogenetic diversity of ammonia-oxidizing archaea and bacteria in biofilters of recirculating aquaculture systems
    Sakami, Tomoko
    Andoh, Tadashi
    Morita, Tetsuo
    Yamamoto, Yoshihisa
    MARINE GENOMICS, 2012, 7 : 27 - 31