Gene targeting using the Agrobacterium tumefaciens-mediated CRISPR-Cas system in rice

被引:142
|
作者
Xu, Rongfang [1 ,3 ]
Li, Hao [1 ,2 ]
Qin, Ruiying [1 ]
Wang, Lu [1 ]
Li, Li [1 ,3 ]
Wei, Pengcheng [1 ,2 ]
Yang, Jianbo [1 ]
机构
[1] Anhui Acad Agr Sci, Rice Res Inst, Key Lab Rice Genet Breeding Anhui Prov, Hefei 230031, Peoples R China
[2] Anhui Acad Agr Sci, Inst Agr Engn, Hefei 230031, Peoples R China
[3] Anhui Univ, Coll Life Sci, Hefei 230031, Peoples R China
基金
中国国家自然科学基金;
关键词
Gene targeting; CRISPR/Cas9; Rice; Agrobacterium; Stable transformation; Genome editing; PLANTS; RNA; MUTAGENESIS; MULTIPLEX; NUCLEASES; MODEL;
D O I
10.1186/s12284-014-0005-6
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Background: The type II clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system is a novel molecular tool for site-specific genome modification. The CRISPR-Cas9 system was recently introduced into plants by transient or stable transformation. Findings: Here, we report gene targeting in rice via the Agrobacterium tumefaciens-mediated CRISPR-Cas9 system. Three 20-nt CRISPR RNAs were designed to pair with diverse sites followed by the protospacer adjacent motif (PAM) of the rice herbicide resistance gene BEL. After integrating the single-guide RNA (sgRNA) and Cas9 cassette in a single binary vector, transgenic rice plants harboring sgRNA: Cas9 were generated by A. tumefaciens-mediated stable transformation. By analyzing the targeting site on the genome of corresponding transgenic plants, the mutations were determined. The mutagenesis efficiency was varied from similar to 2% to similar to 16%. Furthermore, phenotypic analysis revealed that the biallelic mutated transgenic plant was sensitive to bentazon. Conclusions: Our results indicate that the agricultural trait could be purposely modified by sgRNA:Cas9-induced gene targeting. CRISPR-Cas9 system could be exploited as a powerful tool for trait improvements in crop breeding.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Agrobacterium tumefaciens-mediated Transformation of Atropa belladonna
    Song, Guo-Qing
    Walworth, Aaron
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2013, 49 : S72 - S73
  • [42] Agrobacterium tumefaciens-mediated transformation of Coniella granati
    Yuan, Hongbo
    Hou, Hui
    Huang, Tianxiang
    Zhou, Zengqiang
    Tu, Hongtao
    Wang, Li
    JOURNAL OF MICROBIOLOGICAL METHODS, 2021, 182
  • [43] Agrobacterium tumefaciens-mediated transformation of an Oncidium orchid
    C.-H. Liau
    S.-J. You
    V. Prasad
    H.-H. Hsiao
    J.-C. Lu
    N.-S. Yang
    M.-T. Chan
    Plant Cell Reports, 2003, 21 : 993 - 998
  • [44] Agrobacterium tumefaciens-mediated GUS gene transformation of Robinia pseudoacacia 'Idaho'
    Sun Hai-jun Li Min Chen Shou-yi He Si-jie Wang Hua-fang College of Biological Sciences and Biotechnology
    Forest Ecosystems, 2006, (04) : 63 - 68
  • [45] Agrobacterium tumefaciens-Mediated Plant Transformation: A Review
    Azizi-Dargahlou, Shahnam
    Pouresmaeil, Mahin
    MOLECULAR BIOTECHNOLOGY, 2024, 66 (07) : 1497 - +
  • [46] Agrobacterium tumefaciens-mediated transformation of Paracoccidioides brasiliensis
    Leal, CV
    Montes, BA
    Mesa, AC
    Rua, AL
    Corredor, M
    Restrepo, A
    McEwen, JG
    MEDICAL MYCOLOGY, 2004, 42 (04) : 391 - 395
  • [47] Agrobacterium tumefaciens-Mediated Transformation of Candida glabrata
    D'Spain, Samantha
    Andrade, Pilar, I
    Brockman, Nohelli E.
    Fu, Jianmin
    Wickes, Brian L.
    JOURNAL OF FUNGI, 2022, 8 (06)
  • [48] Agrobacterium tumefaciens-mediated transformation of Mucor circinelloides
    Nyilasi, I
    Acs, K
    Papp, T
    Nagy, E
    Vágvölgyi, C
    FOLIA MICROBIOLOGICA, 2005, 50 (05) : 415 - 420
  • [49] Agrobacterium tumefaciens-mediated transformation of Rhipsalidopsis gaertneri
    Al-Ramamneh, E. A.
    Sriskandarajah, S.
    Serek, M.
    PLANT CELL REPORTS, 2006, 25 (11) : 1219 - 1225
  • [50] Agrobacterium tumefaciens-mediated transformation ofMucor circinelloides
    I. Nyilasi
    K. Ács
    T. Papp
    E. Nagy
    C. Vágvölgyi
    Folia Microbiologica, 2005, 50 : 415 - 420