A homogenization method for analysis of heterogeneous cosserat materials

被引:4
|
作者
Yuan, X [1 ]
Tomita, Y
机构
[1] Kobe Univ, Grad Sch Sci & Technol, Kobe, Hyogo 6578501, Japan
[2] Kobe Univ, Fac Engn, Kobe, Hyogo 6578501, Japan
来源
关键词
homogenization method; micropolar material; size effect;
D O I
10.4028/www.scientific.net/KEM.177-180.53
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In order to predict the deformation behaviors that depend upon the scale of the microstructure of the material, we developed an asymptotic homogenization method involving a scale parameter for heterogeneous Cosserat materials. The method is then applied to the analysis of the problem of a body with internal voids and the clarification of the effect of the relative void size and material parameters on the mechanical response of the materials.
引用
收藏
页码:53 / 58
页数:6
相关论文
共 50 条
  • [41] REFINEMENT OF METHOD OF HOMOGENIZATION OF A HETEROGENEOUS REACTOR
    LALETIN, NI
    ELSHIN, AV
    SOVIET ATOMIC ENERGY, 1977, 43 (04): : 879 - 886
  • [42] AN EFFECTIVE HOMOGENIZATION METHOD FOR HETEROGENEOUS ASSEMBLIES
    TAKEDA, T
    SATO, H
    ONO, S
    ANNALS OF NUCLEAR ENERGY, 1982, 9 (10) : 509 - 524
  • [43] Eigendeformation-based reduced order homogenization for failure analysis of heterogeneous materials
    Oskay, Caglar
    Fish, Jacob
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (07) : 1216 - 1243
  • [44] Two field multibody method for periodic homogenization in fracture mechanics of nonlinear heterogeneous materials
    Perales, F.
    Bourgeois, S.
    Chrysochoos, A.
    Monerie, Y.
    ENGINEERING FRACTURE MECHANICS, 2008, 75 (11) : 3378 - 3398
  • [45] Random homogenization analysis for heterogeneous materials with full randomness and correlation in microstructure based on finite element method and Monte-carlo method
    Juan Ma
    Jie Zhang
    Liangjie Li
    Peter Wriggers
    Shahab Sahraee
    Computational Mechanics, 2014, 54 : 1395 - 1414
  • [46] Random homogenization analysis for heterogeneous materials with full randomness and correlation in microstructure based on finite element method and Monte-carlo method
    Ma, Juan
    Zhang, Jie
    Li, Liangjie
    Wriggers, Peter
    Sahraee, Shahab
    COMPUTATIONAL MECHANICS, 2014, 54 (06) : 1395 - 1414
  • [47] Homogenization method for analysis of dynamic viscoelastic properties of composite materials
    Koishi, M.
    Shiratori, M.
    Miyoshi, T.
    Kabe, K.
    Nippon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1996, 62 (602): : 2270 - 2275
  • [48] A micromechanics theory for homogenization and dehomogenization of aperiodic heterogeneous materials
    Peng, Bo
    Yu, Wenbin
    COMPOSITE STRUCTURES, 2018, 199 : 53 - 62
  • [49] A New Micromechanics Theory for Homogenization and Dehomogenization of Heterogeneous Materials
    Peng, B.
    Yu, W.
    PROCEEDINGS OF THE AMERICAN SOCIETY FOR COMPOSITES: THIRTIETH TECHNICAL CONFERENCE, 2015, : 2176 - 2194
  • [50] Adaptive deep homogenization theory for periodic heterogeneous materials
    Wu, Jiajun
    Chen, Qiang
    Jiang, Jindong
    Chatzigeorgiou, George
    Meraghni, Fodil
    COMPOSITE STRUCTURES, 2024, 340