On the Comparison of Classifiers for Microarray Data

被引:13
|
作者
Hanczar, Blaise [1 ]
Dougherty, Edward R. [2 ,3 ]
机构
[1] Univ Paris 05, LIPADE, F-75006 Paris, France
[2] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA
[3] Translat Genom Res Inst, Computat Biol Div, Phoenix, AZ 85004 USA
关键词
Microarray classification; error estimation; classifier comparison; variance study; CROSS-VALIDATION; CLASSIFICATION; CANCER; INFERENCE; SELECTION; NETWORKS; MODEL;
D O I
10.2174/157489310790596376
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The aim of many microarray experiments is to build discriminatory diagnosis and prognosis models. A large number of supervised methods have been proposed in literature for microarray-based classification. Model comparison, which is based on the classification error estimation, is a critical issue. Previous studies have shown that error estimation is unreliable in high-dimensional small-sample settings. This leads naturally to questioning the validity of classification-rule comparison approaches being used in the literature. In this paper we present a brief review of the different comparison methods used in bioinformatics. Then, we test these methods on a set of simulations based on both synthetic and real data. These simulations include different feature-label distributions, classification rules, error estimators and variance estimators. The results show that none of these methods can provide reliable comparison across a wide spectrum of feature-label distributions and classification rules.
引用
收藏
页码:29 / 39
页数:11
相关论文
共 50 条
  • [41] Using formal concept analysis for microarray data comparison
    Choi, V.
    Huang, Y.
    Lam, V.
    Potter, D.
    Laubenbacher, R.
    Duca, K.
    [J]. PROCEEDINGS OF THE 5TH ASIA- PACIFIC BIOINFOMATICS CONFERENCE 2007, 2007, 5 : 57 - +
  • [42] Normalization of DNA Microarray Data with BIC Model Comparison
    Okazaki, Takeo
    [J]. INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2014, 14 (03): : 9 - 15
  • [43] Dance Pose Identification from Motion Capture Data: A Comparison of Classifiers
    Protopapadakis, Eftychios
    Voulodimos, Athanasios
    Doulamis, Anastasios
    Camarinopoulos, Stephanos
    Doulamis, Nikolaos
    Miaoulis, Georgios
    [J]. TECHNOLOGIES, 2018, 6 (01):
  • [44] A Comparison Study of Strategies for Combining Classifiers from Distributed Data Sources
    Czarnowski, Ireneusz
    Jedrzejowicz, Piotr
    [J]. ADAPTIVE AND NATURAL COMPUTING ALGORITHMS, 2009, 5495 : 609 - 618
  • [45] Mulcom: a multiple comparison statistical test for microarray data in Bioconductor
    Claudio Isella
    Tommaso Renzulli
    Davide Corà
    Enzo Medico
    [J]. BMC Bioinformatics, 12
  • [46] Comparison and consolidation of microarray data sets of human tissue expression
    Russ, Jenny
    Futschik, Matthias E.
    [J]. BMC GENOMICS, 2010, 11
  • [47] Software framework for comparison of quantitative proteomics and DNA microarray data
    Ivakhno, S.
    Kornelyuk, A.
    [J]. MOLECULAR & CELLULAR PROTEOMICS, 2005, 4 (08) : S23 - S23
  • [48] Detecting differential expression in microarray data: comparison of optimal procedures
    Perelman, Elena
    Ploner, Alexander
    Calza, Stefano
    Pawitan, Yudi
    [J]. BMC BIOINFORMATICS, 2007, 8 (1)
  • [49] Regulation of bacterial respiration: Comparison of microarray and comparative genomics data
    M. O. Tsiganova
    M. S. Gelfand
    D. A. Ravcheev
    [J]. Molecular Biology, 2007, 41 : 497 - 512
  • [50] A Comparison of Algorithms to Find Differentially Expressed Genes in Microarray Data
    Ultsch, Alfred
    Pallasch, Christian
    Bergmann, Eckhard
    Christiansen, Holger
    [J]. ADVANCES IN DATA ANALYSIS, DATA HANDLING AND BUSINESS INTELLIGENCE, 2010, : 685 - +