On the Comparison of Classifiers for Microarray Data

被引:13
|
作者
Hanczar, Blaise [1 ]
Dougherty, Edward R. [2 ,3 ]
机构
[1] Univ Paris 05, LIPADE, F-75006 Paris, France
[2] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA
[3] Translat Genom Res Inst, Computat Biol Div, Phoenix, AZ 85004 USA
关键词
Microarray classification; error estimation; classifier comparison; variance study; CROSS-VALIDATION; CLASSIFICATION; CANCER; INFERENCE; SELECTION; NETWORKS; MODEL;
D O I
10.2174/157489310790596376
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The aim of many microarray experiments is to build discriminatory diagnosis and prognosis models. A large number of supervised methods have been proposed in literature for microarray-based classification. Model comparison, which is based on the classification error estimation, is a critical issue. Previous studies have shown that error estimation is unreliable in high-dimensional small-sample settings. This leads naturally to questioning the validity of classification-rule comparison approaches being used in the literature. In this paper we present a brief review of the different comparison methods used in bioinformatics. Then, we test these methods on a set of simulations based on both synthetic and real data. These simulations include different feature-label distributions, classification rules, error estimators and variance estimators. The results show that none of these methods can provide reliable comparison across a wide spectrum of feature-label distributions and classification rules.
引用
收藏
页码:29 / 39
页数:11
相关论文
共 50 条
  • [1] A novel ensemble of classifiers for microarray data classification
    Chen, Yuehui
    Zhao, Yaou
    [J]. APPLIED SOFT COMPUTING, 2008, 8 (04) : 1664 - 1669
  • [2] An ensemble of filters and classifiers for microarray data classification
    Bolon-Canedo, V.
    Sanchez-Marono, N.
    Alonso-Betanzos, A.
    [J]. PATTERN RECOGNITION, 2012, 45 (01) : 531 - 539
  • [3] On the statistical assessment of classifiers using DNA microarray data
    Ancona, N.
    Maglietta, R.
    Piepoli, A.
    D'Addabbo, A.
    Cotugno, R.
    Savino, M.
    Liuni, S.
    Carella, M.
    Pesole, G.
    Perri, F.
    [J]. BMC BIOINFORMATICS, 2006, 7 (1)
  • [4] Deterministic Classifiers Accuracy Optimization for Cancer Microarray Data
    Rodrigues, Vania
    Deusdado, Sergio
    [J]. PRACTICAL APPLICATIONS OF COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2020, 1005 : 154 - 163
  • [5] On the statistical assessment of classifiers using DNA microarray data
    N Ancona
    R Maglietta
    A Piepoli
    A D'Addabbo
    R Cotugno
    M Savino
    S Liuni
    M Carella
    G Pesole
    F Perri
    [J]. BMC Bioinformatics, 7
  • [6] Classification of microarray data using kernel based classifiers
    Swati, Shipra
    Kumar, Mukesh
    Mishra, Ritesh Kumar
    [J]. Revue d'Intelligence Artificielle, 2019, 33 (03) : 235 - 247
  • [7] Comparison of three nonparametric density estimation techniques using Bayes' classifiers applied to microarray data analysis
    Peters, CA
    Valafar, F
    [J]. METMBS'03: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MATHEMATICS AND ENGINEERING TECHNIQUES IN MEDICINE AND BIOLOGICAL SCIENCES, 2003, : 119 - 125
  • [8] Bayesian network classifiers for time-series microarray data
    Tucker, A
    Vinciotti, V
    't Hoen, PAC
    Liu, XH
    [J]. ADVANCES IN INTELLIGENT DATA ANALYSIS VI, PROCEEDINGS, 2005, 3646 : 475 - 485
  • [9] Regularized Least Squares cancer classifiers from DNA microarray data
    Ancona, N
    Maglietta, R
    D'Addabbo, A
    Liuni, S
    Pesole, G
    [J]. BMC BIOINFORMATICS, 2005, 6 (Suppl 4)
  • [10] Integration of microarray data for a comparative study of classifiers and identification of marker genes
    Berrar, D
    Sturgeon, B
    Bradbury, I
    Downes, CS
    Dubitzky, W
    [J]. METHODS OF MICROARRAY DATA ANALYSIS IV, 2005, : 147 - 162