Automatic Annotation and Evaluation of Error Types for Grammatical Error Correction

被引:97
|
作者
Bryant, Christopher [1 ]
Felice, Mariano [1 ]
Briscoe, Ted [1 ]
机构
[1] Univ Cambridge, Comp Lab, ALTA Inst, Cambridge, England
关键词
D O I
10.18653/v1/P17-1074
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Until now, error type performance for Grammatical Error Correction (GEC) systems could only be measured in terms of recall because system output is not annotated. To overcome this problem, we introduce ERRANT, a grammatical ERRor ANnotation Toolkit designed to automatically extract edits from parallel original and corrected sentences and classify them according to a new, dataset-agnostic, rule-based framework. This not only facilitates error type evaluation at different levels of granularity, but can also be used to reduce annotator workload and standardise existing GEC datasets. Human experts rated the automatic edits as "Good" or "Acceptable" in at least 95% of cases, so we applied ERRANT to the system output of the CoNLL-2014 shared task to carry out a detailed error type analysis for the first time.
引用
收藏
页码:793 / 805
页数:13
相关论文
共 50 条
  • [1] Automatic Metric Validation for Grammatical Error Correction
    Choshen, Leshem
    Abend, Omri
    [J]. PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL), VOL 1, 2018, : 1372 - 1382
  • [2] A Review of the Research on the Evaluation Metrics for Automatic Grammatical Error Correction System
    Long, Manli
    Wang, Yan
    Peng, Yifei
    Huang, Wanwu
    [J]. MOBILE INFORMATION SYSTEMS, 2022, 2022
  • [3] Towards standardizing Korean Grammatical Error Correction: Datasets and Annotation
    Yoon, Soyoung
    Park, Sungjoon
    Kim, Gyuwan
    Cho, Junhee
    Park, Kihyo
    Kim, Gyutae
    Seo, Minjoon
    Oh, Alice
    [J]. PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, VOL 1, 2023, : 6713 - 6742
  • [4] Construction of a Quality Estimation Dataset for Automatic Evaluation of Japanese Grammatical Error Correction
    Suzuki, Daisuke
    Takahashi, Yujin
    Yamashita, Ikumi
    Aida, Taichi
    Hirasawa, Tosho
    Nakatsuji, Michitaka
    Mita, Masato
    Komachi, Mamoru
    [J]. LREC 2022: THIRTEEN INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2022, : 5565 - 5572
  • [5] Construction of a Quality Estimation Dataset for Automatic Evaluation of Japanese Grammatical Error Correction
    Suzuki, Daisuke
    Takahashi, Yujin
    Yamashita, Ikumi
    Aida, Taichi
    Hirasawa, Tosho
    Nakatsuji, Michitaka
    Mita, Masato
    Komachi, Mamoru
    [J]. 2022 Language Resources and Evaluation Conference, LREC 2022, 2022, : 5565 - 5572
  • [6] Automatic Grammatical Error Correction Based on Edit Operations Information
    Wang, Quanbin
    Tan, Ying
    [J]. NEURAL INFORMATION PROCESSING (ICONIP 2018), PT V, 2018, 11305 : 494 - 505
  • [7] Efficient Grammatical Error Correction with Hierarchical Error Detections and Correction
    Pan, Fayu
    Cao, Bin
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON WEB SERVICES, ICWS 2021, 2021, : 525 - 530
  • [8] Revisiting Meta-evaluation for Grammatical Error Correction
    Kobayashi, Masamune
    Mita, Masato
    Komachi, Mamoru
    [J]. TRANSACTIONS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, 2024, 12 : 837 - 855
  • [9] Adversarial Grammatical Error Correction
    Raheja, Vipul
    Alikaniotis, Dimitris
    [J]. FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EMNLP 2020, 2020,
  • [10] Comparison of the Evaluation Metrics for Neural Grammatical Error Correction With Overcorrection
    Park, Chanjun
    Yang, Yeongwook
    Lee, Chanhee
    Lim, Heuiseok
    [J]. IEEE ACCESS, 2020, 8 : 106264 - 106272