The effect of samaria doped ceria coating on the performance of Li1.2Ni0.13Co0.13Mn0.54O2 cathode material for lithium-ion battery

被引:37
|
作者
He, Fei [1 ]
Wang, Xiaoqing [2 ]
Du, Chenqiang [3 ]
Baker, Andrew P. [1 ]
Wu, Junwei [1 ]
Zhang, Xinhe [4 ]
机构
[1] Harbin Inst Technol, Dept Mat Sci & Engn, Shenzhen Key Lab Adv Mat, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China
[2] Tianjin Polytech Univ, Dept Appl Chem, Tianjin 300387, Peoples R China
[3] Tianjin Univ, Dept Appl Chem, Tianjin 300072, Peoples R China
[4] Dongguan McNair Technol Co Ltd, Dongguan 523700, Guangdong, Peoples R China
关键词
Lithium-rich layered oxide; Samaria doped ceria; Surface modification; Lithium ion battery; ENHANCED CYCLING STABILITY; LAYERED OXIDE MATERIAL; LI-ION; ELECTROCHEMICAL PERFORMANCE; HIGH-CAPACITY; STRUCTURAL TRANSFORMATION; SURFACE MODIFICATION; ENERGY-STORAGE; ELECTRODES;
D O I
10.1016/j.electacta.2014.11.139
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The lithium-rich layered oxide; xLi(2)MnO(3)center dot(1-x)LiMeO2 (Me = Co, Ni, Mn, etc.) is one of the most promising cathode materials for lithium-ion batteries in electric vehicles and energy storage systems due to its high energy density, low cost, and excellent thermal stability. In this work, Li1.2Ni0.13Co0.13Mn0.54O2 was synthesized and novel coating was applied to enhance the performance. The pristine Li1.2Ni0.13Co0.13Mn0.54O2 powder was synthesized by an aqueous solution method, followed by calcination at 900 degrees C in air, and the surface was then modified by coating with samaria doped ceria (SDC). Both the pristine and the surface modified materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), and electrochemical measurements. The SDC coating with 1 wt.% was found to be the most effective in improving the discharge capacity. Specifically, it delivered 261 mAh g(-1) at 0.1 C rate with lower initial irreversible capacity loss. This superior electrochemical performance is attributed to the function of SDC as protective layer suppressing the side reaction between the electrode and the electrolyte, and decreasing the electron charge transfer resistance, as evidenced by the collected electrochemical impedance spectroscopy (EIS) data. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:484 / 491
页数:8
相关论文
共 50 条
  • [41] Improved electrochemical performance of layered Li1.2Ni0.13Co0.13Mn0.54O2 cathode material via VPO5 coating
    Zhihao Zhang
    Junlin Tao
    Beibei He
    Huanwen Wang
    Yansheng Gong
    Jun Jin
    Xiangpeng Fang
    Rui Wang
    Ionics, 2024, 30 : 2459 - 2468
  • [42] Synthesis and electrochemical performance of cathode material Li1.2Co0.13Ni0.13Mn0.54O2 from spent lithium-ion batteries
    Li, Li
    Zhang, Xiaoxiao
    Chen, Renjie
    Zhao, Taolin
    Lu, Jun
    Wu, Feng
    Amine, Khalil
    JOURNAL OF POWER SOURCES, 2014, 249 : 28 - 34
  • [43] Synthesis and properties of Li-rich cathode material Li1.2Ni0.13Co0.13Mn0.54O2 in li-ion batteries
    Wang Z.
    Lu H.
    Yin Y.
    Zhuang W.
    Lu S.
    1600, Editorial Office of Chinese Journal of Rare Metals (40): : 38 - 42
  • [44] Improving Electrochemical Performance of Li1.2Ni0.13Co0.13Mn0.54O2 Cathode Material by Al3+ Doping
    Liang, Xinghua
    Wu, Hanjie
    Chen, Haiyan
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2016, 11 (11): : 9164 - 9174
  • [45] Polymerization-pyrolysis-assisted nanofabrication of solid solution Li1.2Ni0.13Co0.13Mn0.54O2 for lithium-ion battery cathodes
    Zhao, Chenhao
    Kang, Wenpei
    Xue, Qingbin
    Shen, Qiang
    JOURNAL OF NANOPARTICLE RESEARCH, 2012, 14 (12)
  • [46] Polymerization-pyrolysis-assisted nanofabrication of solid solution Li1.2Ni0.13Co0.13Mn0.54O2 for lithium-ion battery cathodes
    Chenhao Zhao
    Wenpei Kang
    Qingbin Xue
    Qiang Shen
    Journal of Nanoparticle Research, 2012, 14
  • [47] β-MnO2 sacrificial template synthesis of Li1.2Ni0.13Co0.13Mn0.54O2 for lithium ion battery cathodes
    Zhao, Chenhao
    Wang, Xinxin
    Liu, Rui
    Xu, Fenfen
    Shen, Qiang
    RSC ADVANCES, 2014, 4 (14): : 7154 - 7159
  • [48] The effects of TiO2 coating on the electrochemical performance of Li[Li0.2Mn0.54Ni0.13CO0.13]O2 cathode material for lithium-ion battery
    Zheng, J. M.
    Li, J.
    Zhang, Z. R.
    Guo, X. J.
    Yang, Y.
    SOLID STATE IONICS, 2008, 179 (27-32) : 1794 - 1799
  • [49] Surface Modification of Li1.2Ni0.13Mn0.54Co0.13O2 by Hydrazine Vapor as Cathode Material for Lithium-Ion Batteries
    Zhang, Jie
    Lei, Zhihong
    Wang, Jiulin
    NuLi, Yanna
    Yang, Jun
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (29) : 15821 - 15829
  • [50] Glucose-assisted combustion synthesis of Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials with superior electrochemical performance for lithium-ion batteries
    Li, Honglei
    Zhang, Shichao
    Wei, Xin
    Yang, Puheng
    Jian, Zhixu
    Meng, Juan
    RSC ADVANCES, 2016, 6 (82) : 79050 - 79057