Estimation of Swell Height Using Spaceborne GNSS-R Data from Eight CYGNSS Satellites

被引:16
|
作者
Bu, Jinwei [1 ,2 ,3 ]
Yu, Kegen [1 ,2 ]
Park, Hyuk [3 ]
Huang, Weimin [4 ]
Han, Shuai [1 ,2 ]
Yan, Qingyun [5 ]
Qian, Nijia [1 ,2 ]
Lin, Yiruo [1 ,2 ]
机构
[1] China Univ Min & Technol, MNR Key Lab Land Environm & Disaster Monitoring, Xuzhou 221116, Jiangsu, Peoples R China
[2] China Univ Min & Technol, Sch Environm Sci & Spatial Informat, Xuzhou 221116, Jiangsu, Peoples R China
[3] Univ Politecn Cataluna, Dept Phys, Barcelona 08034, Spain
[4] Mem Univ Newfoundland, Dept Elect & Comp Engn, St John, NL A1B 3X5, Canada
[5] Nanjing Univ Informat Sci & Technol, Sch Remote Sensing & Geomat Engn, Nanjing 210044, Peoples R China
基金
中国国家自然科学基金;
关键词
Global Navigation Satellite System-Reflectometry (GNSS-R); Cyclone Global Navigation Satellite System (CYGNSS); delay-Doppler maps (DDMs); swell height; particle swarm optimization (PSO); simulated annealing (SA); SIGNIFICANT WAVE HEIGHT; OCEAN; SEA; EXTRACTION; INVERSION;
D O I
10.3390/rs14184634
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Global Navigation Satellite System (GNSS)-Reflectometry (GNSS-R) technology has opened a new window for ocean remote sensing because of its unique advantages, including short revisit period, low observation cost, and high spatial-temporal resolution. In this article, we investigated the potential of estimating swell height from delay-Doppler maps (DDMs) data generated by spaceborne GNSS-R. Three observables extracted from the DDM are introduced for swell height estimation, including delay-Doppler map average (DDMA), the leading edge slope (LES) of the integrated delay waveform (IDW), and trailing edge slope (TES) of the IDW. We propose one modeling scheme for each observable. To improve the swell height estimation performance of a single observable-based method, we present a data fusion approach based on particle swarm optimization (PSO). Furthermore, a simulated annealing aided PSO (SA-PSO) algorithm is proposed to handle the problem of local optimal solution for the PSO algorithm. Extensive testing has been performed and the results show that the swell height estimated by the proposed methods is highly consistent with reference data, i.e., the ERA5 swell height. The correlation coefficient (CC) is 0.86 and the root mean square error (RMSE) is 0.56 m. Particularly, the SA-PSO method achieved the best performance, with RMSE, CC, and mean absolute percentage error (MAPE) being 0.39 m, 0.92, and 18.98%, respectively. Compared with the DDMA, LES, TES, and PSO methods, the RMSE of the SA-PSO method is improved by 23.53%, 26.42%, 30.36%, and 7.14%, respectively.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Impacts of Spaceborne GNSS-R System Observations on Storm Surge Prediction: A Hurricane Harvey Case Study Using CYGNSS Full DDM Downlinks
    Kang, Younghun
    Kubatko, Ethan
    Al-Khaldi, Mohammad M.
    Johnson, Joel T.
    Nepal, Suranjan
    Sines, Aaron
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 3791 - 3798
  • [42] GNSS-R FROM THE SMAP AND CYGNSS MISSIONS: APPLICATION TO POLARIMETRIC SCATTEROMETRY AND OCEAN ALTIMETRY
    Carreno-Luengo, H.
    Lowe, S. T.
    Zuffada, C.
    Esterhuizen, S.
    Oveisgharan, S.
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 5019 - 5021
  • [43] A Preliminary Study on Ionospheric Scintillation Anomalies Detected Using GNSS-R Data from NASA CYGNSS Mission as Possible Earthquake Precursors
    Molina, Carlos
    Boudriki Semlali, Badr-Eddine
    Park, Hyuk
    Camps, Adriano
    REMOTE SENSING, 2022, 14 (11)
  • [44] Spaceborne GNSS-R for Sea Ice Classification Using Machine Learning Classifiers
    Zhu, Yongchao
    Tao, Tingye
    Li, Jiangyang
    Yu, Kegen
    Wang, Lei
    Qu, Xiaochuan
    Li, Shuiping
    Semmling, Maximilian
    Wickert, Jens
    REMOTE SENSING, 2021, 13 (22)
  • [45] Deep learning retrieval method for global ocean significant wave height by integrating spaceborne GNSS-R data and multivariable parameters
    Bu, Jinwei
    Yu, Kegen
    Wang, Qiulan
    Li, Linghui
    Liu, Xinyu
    Zuo, Xiaoqing
    Chang, Jun
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2024, 53 (07): : 1321 - 1335
  • [46] Spaceborne GNSS-R Wind Speed Retrieval Using Machine Learning Methods
    Wang, Changyang
    Yu, Kegen
    Qu, Fangyu
    Bu, Jinwei
    Han, Shuai
    Zhang, Kefei
    REMOTE SENSING, 2022, 14 (14)
  • [47] SPACEBORNE GNSS-R FROM THE SMAP MISSION: FIRST ASSESSMENT OF POLARIMETRIC SCATTEROMETRY
    Carreno-Luengo, H.
    Lowe, S. T.
    Zuffada, C.
    Esterhuizen, S.
    Oveisgharan, S.
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 4095 - 4098
  • [48] Soil Moisture Retrieval in Southeast China from Spaceborne GNSS-R Measurements
    Dong, Zhounan
    Jin, Shuanggen
    2019 PHOTONICS & ELECTROMAGNETICS RESEARCH SYMPOSIUM - FALL (PIERS - FALL), 2019, : 1961 - 1965
  • [49] Sensing Sea Ice Based on Doppler Spread Analysis of Spaceborne GNSS-R Data
    Zhu, Yongchao
    Tao, Tingye
    Yu, Kegen
    Li, Zhenxuan
    Qu, Xiaochuan
    Ye, Zhourun
    Geng, Jun
    Zou, Jingui
    Semmling, Maximilian
    Wickert, Jens
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 217 - 226
  • [50] Information Fusion for Spaceborne GNSS-R Sea Surface Height Retrieval Using Modified Residual Multimodal Deep Learning Method
    Wang, Qiang
    Zheng, Wei
    Wu, Fan
    Zhu, Huizhong
    Xu, Aigong
    Shen, Yifan
    Zhao, Yelong
    REMOTE SENSING, 2023, 15 (06)